Torres Izu, Ramón
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Torres Izu
First Name
Ramón
person.page.departamento
Ingeniería
person.page.instituteName
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
2 results
Search Results
Now showing 1 - 2 of 2
Publication Open Access Robotic belt finishing with process control for accurate surfaces(MDPI, 2023) Torres Izu, Ramón; Mata Cantón, Sara; Iriarte Goñi, Xabier; Barrenetxea Azpeitia, David; Torres Izu, Ramón; Ingeniería; IngeniaritzaThe aerospace industry still relies on manual processes for finish applications, which can be a tedious task. In recent years, robotic automation has gained interest due to its flexibility and adaptability to provide solutions to this issue. However, these processes are difficult to automate, as the material removal rate can vary due to changes in the process variables. This work proposes an approach for automatically modeling the material removal process based on experimental data in a robotic belt grinding application. The methodology concerns the measurement of the removed mass of a test part during a finishing process using an automatic precision measurement system. Then, experimental models are used to develop a control algorithm for continuous material removal that maintains a uniform finishing process by regulating the robot’s feed rate. Next, the results for various experimental material removal models under different process conditions are presented, showing the process parameter’s influence on the removal capacity. Finally, the proposed control algorithm is validated, achieving a constant material removal rate.Publication Embargo Compensation strategy to minimize over-cut effects in robotic belt grinding with passive-compliant tools(Elsevier, 2025-03-19) Torres Izu, Ramón; Iriarte Goñi, Xabier; Mata Cantón, Sara; Aginaga García, Jokin; Barrenetxea Azpeitia, David; Ingeniería; Ingeniaritza; Institute of Smart Cities - ISC; Gobierno de Navarra / Nafarroako GobernuaAt the beginning of the robotic belt grinding path, passive-compliant tools can generate an over-cut effect. The transient state from the first contact point between tool and workpiece to the grinding steady state can generate an excess of material removal at the workpiece border. If successive grinding passes are made, this effect will accumulate, increasing the shape deviation at the workpiece border. Therefore, the purpose of this research is to analyze this phenomenon and develop an easy-to-implement compensation strategy to avoid removing an excess of material at the beginning of grinding paths. Specifically, a geometric model of the contact has been developed that, together with the material removal model, allows to reproduce the cut-in effect for a robot-operated passive-compliant tool case. In turn, the compensation strategy that has been designed, avoids removing an excessive amount of material by means of a cut-in path that adjusts the feed velocity to the instantaneous contact force. This path is based on the tool geometry and grinding process parameters. In order to validate the proposed strategy, several experiments have been performed for different process conditions. Results show how the proposed solution significantly reduces the over-cut effect providing a homogeneous material removal since the beginning of the grinding.