Person: García de Vicuña Bilbao, Daniel
Loading...
Email Address
person.page.identifierURI
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
García de Vicuña Bilbao
First Name
Daniel
person.page.departamento
Estadística, Informática y Matemáticas
person.page.instituteName
ORCID
0000-0001-7826-3060
person.page.upna
811267
Name
2 results
Search Results
Now showing 1 - 2 of 2
Publication Open Access Gestión de camas hospitalarias durante la pandemia en Navarra con el apoyo de métodos matemáticos de predicción(Departamento de Salud del Gobierno de Navarra, 2023) Rodrigo Rincón, Isabel; García de Vicuña Bilbao, Daniel; Esparza Artanga, Laida; Santana-Domínguez, Sergio; Martínez-Larrea, Jesús Alfredo; Mallor Giménez, Fermín; Institute of Smart Cities - ISCDurante la pandemia por coronavirus, en Navarra se utilizaron modelos matemáticos de predicción para estimar las camas necesarias, convencionales y de críticos, para atender a los pacientes COVID-19. Las seis ondas pandémicas presentaron distinta incidencia en la población, ocasionando variabilidad en los ingresos hospitalarios y en la ocupación hospitalaria. La respuesta a la enfermedad de los pacientes no fue constante en cada onda, por lo que, para la predicción de cada una, se utilizaron los datos correspondientes de esa onda. El método de predicción constó de dos partes: una describió la entrada de pacientes al hospital y la otra su estancia dentro del mismo. El modelo requirió de la alimentación a tiempo real de los datos actualizados. Los resultados de los modelos de predicción fueron posteriormente volcados al sistema de información corporativo tipo Business Intelligence. Esta información fue utilizada para planificar el recurso cama y las necesidades de profesionales asociadas a la atención de estos pacientes en el ámbito hospitalario. En la cuarta onda se realizó un análisis para cuantificar el grado de acierto de los modelos predictivos. Los modelos predijeron adecuadamente el pico, la meseta y el cambio de tendencia, pero sobreestimaron los recursos necesarios para la atención de los pacientes en la parte descendente de la curva. El principal punto fuerte de la sistemática utilizada para la construcción de modelos predictivos fue proporcionar modelos en tiempo real con datos recogidos con precisión por los sistemas de información que consiguieron un grado de acierto aceptable permitiendo una utilización inmediata.Publication Open Access Hospital preparedness during epidemics using simulation: the case of COVID-19(Springer, 2021) García de Vicuña Bilbao, Daniel; Esparza, Laida; Mallor Giménez, Fermín; Institute of Smart Cities - ISC; Gobierno de Navarra / Nafarroako GobernuaThis paper presents a discrete event simulation model to support decision-making for the short-term planning of hospital resource needs, especially Intensive Care Unit (ICU) beds, to cope with outbreaks, such as the COVID-19 pandemic. Given its purpose as a short-term forecasting tool, the simulation model requires an accurate representation of the current system state and high fidelity in mimicking the system dynamics from that state. The two main components of the simulation model are the stochastic modeling of patient admission and patient flow processes. The patient arrival process is modelled using a Gompertz growth model, which enables the representation of the exponential growth caused by the initial spread of the virus, followed by a period of maximum arrival rate and then a decreasing phase until the wave subsides. We conducted an empirical study concluding that the Gompertz model provides a better fit to pandemic-related data (positive cases and hospitalization numbers) and has superior prediction capacity than other sigmoid models based on Richards, Logistic, and Stannard functions. Patient flow modelling considers different pathways and dynamic length of stay estimation in several healthcare stages using patient-level data. We report on the application of the simulation model in two Autonomous Regions of Spain (Navarre and La Rioja) during the two COVID-19 waves experienced in 2020. The simulation model was employed on a daily basis to inform the regional logistic health care planning team, who programmed the ward and ICU beds based on the resulting predictions.