Person: García de Vicuña Bilbao, Daniel
Loading...
Email Address
person.page.identifierURI
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
García de Vicuña Bilbao
First Name
Daniel
person.page.departamento
Estadística, Informática y Matemáticas
person.page.instituteName
ORCID
0000-0001-7826-3060
person.page.upna
811267
Name
10 results
Search Results
Now showing 1 - 10 of 10
Publication Open Access Hospital preparedness during epidemics using simulation: the case of COVID-19(Springer, 2021) García de Vicuña Bilbao, Daniel; Esparza, Laida; Mallor Giménez, Fermín; Institute of Smart Cities - ISC; Gobierno de Navarra / Nafarroako GobernuaThis paper presents a discrete event simulation model to support decision-making for the short-term planning of hospital resource needs, especially Intensive Care Unit (ICU) beds, to cope with outbreaks, such as the COVID-19 pandemic. Given its purpose as a short-term forecasting tool, the simulation model requires an accurate representation of the current system state and high fidelity in mimicking the system dynamics from that state. The two main components of the simulation model are the stochastic modeling of patient admission and patient flow processes. The patient arrival process is modelled using a Gompertz growth model, which enables the representation of the exponential growth caused by the initial spread of the virus, followed by a period of maximum arrival rate and then a decreasing phase until the wave subsides. We conducted an empirical study concluding that the Gompertz model provides a better fit to pandemic-related data (positive cases and hospitalization numbers) and has superior prediction capacity than other sigmoid models based on Richards, Logistic, and Stannard functions. Patient flow modelling considers different pathways and dynamic length of stay estimation in several healthcare stages using patient-level data. We report on the application of the simulation model in two Autonomous Regions of Spain (Navarre and La Rioja) during the two COVID-19 waves experienced in 2020. The simulation model was employed on a daily basis to inform the regional logistic health care planning team, who programmed the ward and ICU beds based on the resulting predictions.Publication Open Access Un modelo para predecir cuántas camas UCI harán falta durante cada oleada(Asociacion the Conversation España, 2021) Mallor Giménez, Fermín; García de Vicuña Bilbao, Daniel; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISCLa crisis financiera mundial de 2008 puso de moda en España el término económico “prima de riesgo”, hasta entonces desconocido. Del mismo modo, la pandemia ha popularizado expresiones y términos como “doblar la curva”, “incidencia acumulada” e incluso conceptos epidemiológicos más específicos como “el número efectivo de reproducción R₀”. Ocupan portadas de periódicos, así como espacios en noticiarios televisivos y radiofónicos. Constituyen una muestra del uso de las matemáticas para describir la evolución de la pandemia y para proporcionar indicadores con los que las autoridades políticas pueden fundamentar una toma de decisiones informada sobre medidas de distanciamiento social y restricciones a la movilidad. Sin embargo, los modelos matemáticos no solo sirven para describir qué ha pasado o el estado actual de la pandemia, sino que pueden facilitar predicciones muy útiles sobre cómo va a evolucionar. Estas son útiles para la planificación de los recursos sanitarios necesarios para atender a paciente covid-19, como las camas UCI. La planificación facilita la utilización eficiente de recursos y, en consecuencia, proporcionar una mejor atención a todos los pacientes, covid y no covid. Los modelos matemáticos más útiles para predecir variables relacionadas con la evolución de la pandemia son los de simulación. Estos modelos son capaces de representar características complejas de la realidad pandémica, como su aleatoriedad e incertidumbre, así como la variabilidad en el impacto que la enfermedad puede tener en distintas personasPublication Open Access I Congreso Salud, Desastres y Desarrollo Sostenible: libro congreso(2022) Azcárate Camio, Cristina; Cildoz Esquíroz, Marta; Frías Paredes, Laura; Ibarra, Amaia; Galbete Jiménez, Arkaitz; García de Vicuña Bilbao, Daniel; Gastón Romeo, Martín; Moler Cuiral, José Antonio; Mallor Giménez, Fermín; Jean Louis, Clint; Institute of Smart Cities - ISCEl congreso se plantea como un foro de encuentro de investigadores del área de Investigación Operativa con interés en aplicaciones a la salud, los desastres y el desarrollo sostenible, y los profesionales de la toma de decisiones concernientes a los ámbitos anteriores. Este encuentro promueve el intercambio de conocimiento y experiencias entre Universidad y Servicios de Salud para afrontar retos asociados al acceso de la población a unos servicios de salud de calidad y a la gestión del riesgo creciente de desastres naturales o provocados por el ser humano. El envejecimiento de la población y el desarrollo tecnológico plantean nuevos entornos para la provisión de los servicios de salud, en los que su correcta planificación y gestión debe contribuir a garantizar su eficiencia y sostenibilidad. El creciente impacto en términos de vidas humanas y daños económicos causados por desastres naturales y no naturales, como incendios, inundaciones, terremotos, fugas industriales, pandemias, etc. precisa de su comprensión para desarrollar estrategias de prevención y elaborar planes efectivos de respuesta.Publication Open Access Estimation of patient flow in hospitals using up-to-date data: application to bed demand prediction during pandemic waves(Public Library of Science, 2023) García de Vicuña Bilbao, Daniel; López-Cheda, Ana; Jácome, María Amalia; Mallor Giménez, Fermín; Institute of Smart Cities - ISCHospital bed demand forecast is a first-order concern for public health action to avoid healthcare systems to be overwhelmed. Predictions are usually performed by estimating patients flow, that is, lengths of stay and branching probabilities. In most approaches in the literature, estimations rely on not updated published information or historical data. This may lead to unreliable estimates and biased forecasts during new or non-stationary situations. In this paper, we introduce a flexible adaptive procedure using only near-real-time information. Such method requires handling censored information from patients still in hospital. This approach allows the efficient estimation of the distributions of lengths of stay and probabilities used to represent the patient pathways. This is very relevant at the first stages of a pandemic, when there is much uncertainty and too few patients have completely observed pathways. Furthermore, the performance of the proposed method is assessed in an extensive simulation study in which the patient flow in a hospital during a pandemic wave is modelled. We further discuss the advantages and limitations of the method, as well as potential extensions.Publication Open Access Early detection of new pandemic waves: control chart and a new surveillance index(Public Library of Science, 2024) Cildoz Esquíroz, Marta; Gastón Romeo, Martín; Frías Paredes, Laura; García de Vicuña Bilbao, Daniel; Azcárate Camio, Cristina; Mallor Giménez, Fermín; Institute of Smart Cities - ISCThe COVID-19 pandemic highlights the pressing need for constant surveillance, updating of the response plan in post-peak periods and readiness for the possibility of new waves of the pandemic. A short initial period of steady rise in the number of new cases is sometimes followed by one of exponential growth. Systematic public health surveillance of the pandemic should signal an alert in the event of change in epidemic activity within the community to inform public health policy makers of the need to control a potential outbreak. The goal of this study is to improve infectious disease surveillance by complementing standardized metrics with a new surveillance metric to overcome some of their difficulties in capturing the changing dynamics of the pandemic. At statistically-founded threshold values, the new measure will trigger alert signals giving early warning of the onset of a new pandemic wave. We define a new index, the weighted cumulative incidence index, based on the daily new-case count. We model the infection spread rate at two levels, inside and outside homes, which explains the overdispersion observed in the data. The seasonal component of real data, due to the public surveillance system, is incorporated into the statistical analysis. Probabilistic analysis enables the construction of a Control Chart for monitoring index variability and setting automatic alert thresholds for new pandemic waves. Both the new index and the control chart have been implemented with the aid of a computational tool developed in R, and used daily by the Navarre Government (Spain) for virus propagation surveillance during post-peak periods. Automated monitoring generates daily reports showing the areas whose control charts issue an alert. The new index reacts sooner to data trend changes preluding new pandemic waves, than the standard surveillance index based on the 14-day notification rate of reported COVID-19 cases per 100,000 population.Publication Open Access Gestión de camas hospitalarias durante la pandemia en Navarra con el apoyo de métodos matemáticos de predicción(Departamento de Salud del Gobierno de Navarra, 2023) Rodrigo Rincón, Isabel; García de Vicuña Bilbao, Daniel; Esparza Artanga, Laida; Santana-Domínguez, Sergio; Martínez-Larrea, Jesús Alfredo; Mallor Giménez, Fermín; Institute of Smart Cities - ISCDurante la pandemia por coronavirus, en Navarra se utilizaron modelos matemáticos de predicción para estimar las camas necesarias, convencionales y de críticos, para atender a los pacientes COVID-19. Las seis ondas pandémicas presentaron distinta incidencia en la población, ocasionando variabilidad en los ingresos hospitalarios y en la ocupación hospitalaria. La respuesta a la enfermedad de los pacientes no fue constante en cada onda, por lo que, para la predicción de cada una, se utilizaron los datos correspondientes de esa onda. El método de predicción constó de dos partes: una describió la entrada de pacientes al hospital y la otra su estancia dentro del mismo. El modelo requirió de la alimentación a tiempo real de los datos actualizados. Los resultados de los modelos de predicción fueron posteriormente volcados al sistema de información corporativo tipo Business Intelligence. Esta información fue utilizada para planificar el recurso cama y las necesidades de profesionales asociadas a la atención de estos pacientes en el ámbito hospitalario. En la cuarta onda se realizó un análisis para cuantificar el grado de acierto de los modelos predictivos. Los modelos predijeron adecuadamente el pico, la meseta y el cambio de tendencia, pero sobreestimaron los recursos necesarios para la atención de los pacientes en la parte descendente de la curva. El principal punto fuerte de la sistemática utilizada para la construcción de modelos predictivos fue proporcionar modelos en tiempo real con datos recogidos con precisión por los sistemas de información que consiguieron un grado de acierto aceptable permitiendo una utilización inmediata.Publication Open Access Operations research helps public health services managers planning resources in the COVID-19 crisis(Sociedad de Estadística e Investigación Operativa, 2020) García de Vicuña Bilbao, Daniel; Cildoz Esquíroz, Marta; Gastón Romeo, Martín; Azcárate Camio, Cristina; Mallor Giménez, Fermín; Esparza, Laida; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Estadística, Informática y MatemáticasThis article presents the usefulness of operational research models tosupport the decision-making in management problems on the COVID-19 pandemic. The work describes a discrete event simulation model combined with population growth models, which has been used to provide daily predictions of the needs of ward and intensive care unit beds during the COVID-19 outbreak in the Autonomous Community of Navarre, in Spain. This work also discusses the use of the simulation model in non-acutephases of the pandemic to support decision-making during the return to the normal operation of health services or as a resource management learning tool for health logistic planners.Publication Open Access Simulation models to support intensive care unit decision-making in pandemic and non-pandemic times(2022) García de Vicuña Bilbao, Daniel; Mallor Giménez, Fermín; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaThe aim of this thesis is the construction of simulation models to analyse and improve patient admission and inpatient discharge decisions in an Intensive Care Unit (ICU). These decisions are especially relevant in situations of high ICU occupancy because they can lead to the early discharge of an admitted patient or the redirection of a newcomer. Exceptional circumstances, such as the global COVID-19 pandemic that broke out in 2019, increase the need for ICU beds, making this type of study even more relevant. The development of two interactive simulators has enabled us to understand and support ICU decision-making, both in and out of pandemics.Publication Open Access Safely learning intensive care unit management by using a management flight simulator(Elsevier, 2020) García de Vicuña Bilbao, Daniel; Esparza, Laida; Mallor Giménez, Fermín; Institute of Smart Cities - ISCThis paper presents the development of the first management flight simulator of an intensive care unit (ICU). It allows analyzing the physician decision-making related to the admission and discharge of patients and it can be used as a learning–training tool. The discrete event simulation model developed mimics real admission and discharge processes in ICUs, and it recreates the health status of the patients by using real clinical data (instead of using a single value for the length of stay). This flexible tool, which allows recreating ICUs with different characteristics (number of beds, type of patients that arrive, congestion level…), has been used and validated by ICU physicians and nurses of four hospitals. We show through preliminary results the variability among physicians in the decision-making concerning the dilemma of the last bed, which is dealt in a broad sense: it is not only about how the last available ICU bed is assigned but also about how the physician makes decisions about the admission and discharge of patients as the ICU is getting full. The simulator is freely available on the internet to be used by any interested user (https://emi-sstcdapp.unavarra.es/ICU-simulator).Publication Open Access Improving input parameter estimation in online pandemic simulation(IEEE, 2021) García de Vicuña Bilbao, Daniel; Mallor Giménez, Fermín; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Estadística, Informática y MatemáticasSimulation models are suitable tools to represent the complexity and randomness of hospital systems. To be used as forecasting tools during pandemic waves, it is necessary an accurate estimation, by using real-time data, of all input parameters that define the patient pathway and length of stay in the hospital. We propose an estimation method based on an expectation-maximization algorithm that uses data from all patients admitted to the hospital to date. By simulating different pandemic waves, the performance of this method is compared with other two statistical estimators that use only complete data. Results collected to measure the accuracy in the parameters estimation and its influence in the forecasting of necessary resources to provide healthcare to pandemic patients show the better performance of the new estimation method. We also propose a new parameterization of the Gompertz growth model that eases the creation of patient arrival scenarios in the pandemic simulation. © 2021 IEEE.