Gómez Polo, Cristina

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Gómez Polo

First Name

Cristina

person.page.departamento

Ciencias

person.page.instituteName

InaMat2. Instituto de Investigación en Materiales Avanzados y Matemáticas

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 3 of 3
  • PublicationOpen Access
    Giant direct and inverse magnetocaloric effect linked to the same forward martensitic transformation
    (Springer Nature, 2017) Pérez de Landazábal Berganzo, José Ignacio; Recarte Callado, Vicente; Sánchez-Alarcos Gómez, Vicente; Beato López, Juan Jesús; Rodríguez Velamazán, José Alberto; Sánchez Marcos, J.; Gómez Polo, Cristina; Cesari, Eduard; Fisika; Institute for Advanced Materials and Mathematics - INAMAT2; Física
    Metamagnetic shape memory alloys have aroused considerable attraction as potential magnetic refrigerants due to the large inverse magnetocaloric effect associated to the magnetic-field-induction of a reverse martensitic transformation (martensite to austenite). In some of these alloys, the austenite phase can be retained on cooling under high magnetic fields, being the retained phase metastable after field removing. Here, we report a giant direct magnetocaloric effect linked to the anomalous forward martensitic transformation (austenite to martensite) that the retained austenite undergoes on heating. Under moderate fields of 10 kOe, an estimated adiabatic temperature change of 9 K has been obtained, which is (in absolute value) almost twice that obtained in the conventional transformation under higher applied fields. The observation of a different sign on the temperature change associated to the same austenite to martensite transformation depending on whether it occurs on heating (retained) or on cooling is attributed to the predominance of the magnetic or the vibrational entropy terms, respectively.
  • PublicationOpen Access
    Theoretical modeling and experimental verification of the scattering from a ferromagnetic microwire
    (IEEE, 2011) Liberal Olleta, Íñigo; Ederra Urzainqui, Íñigo; Gómez Polo, Cristina; Labrador Otamendi, Alberto; Pérez de Landazábal Berganzo, José Ignacio; Gonzalo García, Ramón; Física; Fisika; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    This contribution presents a theoretical modelling of the scattering of ferromagnetic microwires in free-space and inside a rectangular waveguide, providing both an analytical solution and a physical interpretation of the problem. Special attention is devoted to the impact of the microwire radius and its magnetic properties. Theoretical results have been experimentally verified measuring the reflection, absorption and transmission coefficients of a ferromagnetic microwire inside a rectangular waveguide.
  • PublicationOpen Access
    A comprehensive analysis of the absorption spectrum of conducting ferromagnetic wires
    (IEEE, 2012) Liberal Olleta, Íñigo; Ederra Urzainqui, Íñigo; Gómez Polo, Cristina; Labrador Otamendi, Alberto; Pérez de Landazábal Berganzo, José Ignacio; Gonzalo García, Ramón; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Física; Fisika
    A detailed analysis of the absorption spectrum of conductive ferromagnetic wires is presented. The absorption spectrum is computed from the solution to the scattering problem, and circuit models are formulated to clarify the interplay between losses, skin-effect and wire geometry. Both infinitely-long wires and the axial resonances introduced by finite-length wires are considered. The theoretical results are validated experimentally through measurements within a metallic rectangular waveguide.