Andrés Cara, Damián de

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Andrés Cara

First Name

Damián de

person.page.departamento

Instituto de Agrobiotecnología (IdAB)

person.page.instituteName

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 10 of 17
  • PublicationOpen Access
    Ovine TRIM5α can restrict visna/maedi virus
    (American Society for Microbiology, 2012) Jauregui, Paula; Crespo Otano, Helena; Glaría Ezquer, Idoia; Luján, Lluís; Contreras, A.; Rosati, Sergio; Andrés Cara, Damián de; Amorena Zabalza, Beatriz; Towers, G. J.; Reina Arias, Ramsés; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua; Gobierno de Navarra / Nafarroako Gobernua, IIQ14064.RI1
    The restrictive properties of tripartite motif-containing 5 alpha (TRIM5α) from small ruminant species have not been explored. Here, we identify highly similar TRIM5α sequences in sheep and goats. Cells transduced with ovine TRIM5α effectively restricted the lentivirus visna/maedi virus DNA synthesis. Proteasome inhibition in cells transduced with ovine TRIM5α restored restricted viral DNA synthesis, suggesting a conserved mechanism of restriction. Identification of TRIM5α active molecular species may open new prophylactic strategies against lentiviral infections.
  • PublicationOpen Access
    Iberian red deer: paraphyletic nature at mtDNA but nuclear markers support its genetic identity
    (Wiley, 2016) Carranza, Juan; Salinas, María; Andrés Cara, Damián de; Pérez González, Javier; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua
    Red deer populations in the Iberian glacial refugium were the main source for postglacial recolonization and subspecific radiation in north-western Europe. However, the phylogenetic history of Iberian red deer (Cervus elaphus hispanicus) and its relationships with northern European populations remain uncertain. Here, we study DNA sequences at the mitochondrial control region along with STR markers for over 680 specimens from all the main red deer populations in Spain and other west European areas. Our results from mitochondrial and genomic DNA show contrasting patterns, likely related to the nature of these types of DNA markers and their specific processes of change over time. The results, taken together, bring support to two distinct, cryptic maternal lineages for Iberian red deer that predated the last glacial maximum and that have maintained geographically well differentiated until present. Haplotype relationships show that only one of them contributed to the northern postglacial recolonization. However, allele frequencies of nuclear markers evidenced one main differentiation between Iberian and northern European subspecies although also supported the structure of both matrilines within Iberia. Thus, our findings reveal a paraphyletic nature for Iberian red deer but also its genetic identity and differentiation with respect to northern subspecies. Finally, we suggest that maintaining the singularity of Iberian red deer requires preventing not only restocking practices with red deer specimens belonging to other European populations but also translocations between both Iberian lineages.
  • PublicationOpen Access
    Diagnosing infection with small ruminant lentiviruses of genotypes A and B by combining synthetic peptides in ELISA
    (Elsevier, 2015) Sanjosé, Leticia; Crespo Otano, Helena; Glaría Ezquer, Idoia; Andrés Cara, Damián de; Reina Arias, Ramsés; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua; Gobierno de Navarra / Nafarroako Gobernua; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    The major challenges in diagnosing small ruminant lentivirus (SRLV) infection include early detection and genotyping of strains of epidemiological interest. A longitudinal study was carried out in Rasa Aragonesa sheep experimentally infected with viral strains of genotypes A or B from Spanish neurological and arthritic SRLV outbreaks, respectively. Sera were tested with two commercial ELISAs, three based on specific peptides and a novel combined peptide ELISA. Three different PCR assays were used to further assess infection status. The kinetics of anti-viral antibody responses were variable, with early diagnosis dependent on the type of ELISA used. Peptide epitopes of SRLV genotypes A and B combined in the same ELISA well enhanced the overall detection rate, whereas single peptides were useful for genotyping the infecting strain (A vs. B). The results of the study suggest that a combined peptide ELISA can be used for serological diagnosis of SRLV infection, with single peptide ELISAs useful for subsequent serotyping.
  • PublicationOpen Access
    Small ruminant lentiviruses: genetic variability, tropism and diagnosis
    (MDPI, 2013) Ramírez Álvarez, Hugo; Reina Arias, Ramsés; Amorena Zabalza, Beatriz; Andrés Cara, Damián de; Martínez, Humberto A.; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua
    Small ruminant lentiviruses (SRLV) cause a multisystemic chronic disease affecting animal production and welfare. SRLV infections are spread across the world with the exception of Iceland. Success in controlling SRLV spread depends largely on the use of appropriate diagnostic tools, but the existence of a high genetic/antigenic variability among these viruses, the fluctuant levels of antibody against them and the low viral loads found in infected individuals hamper the diagnostic efficacy. SRLV have a marked in vivo tropism towards the monocyte/macrophage lineage and attempts have been made to identify the genome regions involved in tropism, with two main candidates, the LTR and env gene, since LTR contains primer binding sites for viral replication and the env-encoded protein (SU ENV), which mediates the binding of the virus to the host’s cell and has hypervariable regions to escape the humoral immune response. Once inside the host cell, innate immunity may interfere with SRLV replication, but the virus develops counteraction mechanisms to escape, multiply and survive, creating a quasi-species and undergoing compartmentalization events. So far, the mechanisms of organ tropism involved in the development of different disease forms (neurological, arthritic, pulmonary and mammary) are unknown, but different alternatives are proposed. This is an overview of the current state of knowledge on SRLV genetic variability and its implications in tropism as well as in the development of alternative diagnostic assays.
  • PublicationOpen Access
    Identification of the ovine mannose receptor and its possible role in Visna/Maedi virus infection
    (BioMed Central, 2011) Crespo Otano, Helena; Reina Arias, Ramsés; Glaría Ezquer, Idoia; Ramírez Álvarez, Hugo; Andrés, Ximena de; Jauregui, Paula; Luján, Lluís; Martínez Pomares, Luisa; Amorena Zabalza, Beatriz; Andrés Cara, Damián de; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua
    This study aims to characterize the mannose receptor (MR) gene in sheep and its role in ovine visna/maedi virus (VMV) infection. The deduced amino acid sequence of ovine MR was compatible with a transmembrane protein having a cysteine-rich ricin-type amino-terminal region, a fibronectin type II repeat, eight tandem C-type lectin carbohydrate-recognition domains (CRD), a transmembrane region, and a cytoplasmic carboxy-terminal tail. The ovine and bovine MR sequences were closer to each other compared to human or swine MR. Concanavalin A (ConA) inhibited VMV productive infection, which was restored by mannan totally in ovine skin fibroblasts (OSF) and partially in blood monocyte-derived macrophages (BMDM), suggesting the involvement of mannosylated residues of the VMV ENV protein in the process. ConA impaired also syncytium formation in OSF transfected with an ENV-encoding pN3-plasmid. MR transcripts were found in two common SRLV targets, BMDM and synovial membrane (GSM) cells, but not in OSF. Viral infection of BMDM and especially GSM cells was inhibited by mannan, strongly suggesting that in these cells the MR is an important route of infection involving VMV Env mannosylated residues. Thus, at least three patterns of viral entry into SRLV-target cells can be proposed, involving mainly MR in GSM cells (target in SRLV-induced arthritis), MR in addition to an alternative route in BMDM (target in SRLV infections), and an alternative route excluding MR in OSF (target in cell culture). Different routes of SRLV infection may thus coexist related to the involvement of MR differential expression.
  • PublicationOpen Access
    Post-entry blockade of small ruminant lentiviruses by wild ruminants
    (BioMed Central, 2016) Sanjosé, Leticia; Crespo Otano, Helena; Blatti-Cardinaux, Laure; Glaría Ezquer, Idoia; Martínez Carrasco, Carlos; Berriatua, Eduardo; Amorena Zabalza, Beatriz; Andrés Cara, Damián de; Bertoni, Giuseppe; Reina Arias, Ramsés; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua; Gobierno de Navarra / Nafarroako Gobernua: IIQ010449.RI1; Gobierno de Navarra / Nafarroako Gobernua: IIQ14064.RI1; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Small ruminant lentivirus (SRLV) infection causes losses in the small ruminant industry due to reduced animal production and increased replacement rates. Infection of wild ruminants in close contact with infected domestic animals has been proposed to play a role in SRLV epidemiology, but studies are limited and mostly involve hybrids between wild and domestic animals. In this study, SRLV seropositive red deer, roe deer and mouflon were detected through modified ELISA tests, but virus was not successfully amplified using a set of different PCRs. Apparent restriction of SRLV infection in cervids was not related to the presence of neutralizing antibodies. In vitro cultured skin fibroblastic cells from red deer and fallow deer were permissive to the SRLV entry and integration, but produced low quantities of virus. SRLV got rapidly adapted in vitro to blood-derived macrophages and skin fibroblastic cells from red deer but not from fallow deer. Thus, although direct detection of virus was not successfully achieved in vivo, these findings show the potential susceptibility of wild ruminants to SRLV infection in the case of red deer and, on the other hand, an in vivo SRLV restriction in fallow deer. Altogether these results may highlight the importance of surveilling and controlling SRLV infection in domestic as well as in wild ruminants sharing pasture areas, and may provide new natural tools to control SRLV spread in sheep and goats.
  • PublicationOpen Access
    Detection of PrPSc in lung and mammary gland is favored by the presence of Visna/maedi virus lesions in naturally coinfected sheep
    (EDP Sciences, 2010) Salazar, Eider; Monleón, Eva; Bolea, Rosa; Acín, Cristina; Pérez, Marta María; Álvarez, Neila; Leginagoikoa, Iratxe; Juste, Ramón; Minguijón, Esmeralda; Reina Arias, Ramsés; Glaría Ezquer, Idoia; Berriatua, Eduardo; Andrés Cara, Damián de; Badiola, Juan José; Amorena Zabalza, Beatriz; Luján, Lluís; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua
    There are few reports on the pathogenesis of scrapie (Sc) and Visna/maedi virus (VMV) coinfections. The aim of this work was to study in vivo as well as post mortem both diseases in 91 sheep. Diagnosis of Sc and VMV infections allowed the distribution of animals into five groups according to the presence (+) or absence ( ) of infection by Sc and VMV: Sc /VMV , Sc /VMV+, Sc+/VMV and Sc+/ VMV+. The latter was divided into two subgroups, with and without VMV-induced lymphoid follicle hyperplasia (LFH), respectively. In both the lung and mammary gland, PrPSc deposits were found in the germinal center of hyperplasic lymphoid follicles in the subgroup of Sc+/VMV+ having VMV-induced LFH. This detection was always associated with (and likely preceded by) PrPSc observation in the corresponding lymph nodes. No PrPSc was found in other VMV-associated lesions. Animals suffering from scrapie had a statistically significantly lower mean age than the scrapie free animals at the time of death, with no apparent VMV influence. ARQ/ARQ genotype was the most abundant among the 91 ewes and the most frequent in scrapie-affected sheep. VMV infection does not seem to influence the scrapie risk group distribution among animals from the five groups established in this work. Altogether, these data indicate that certain VMVinduced lesions can favor PrPSc deposits in Sc non-target organs such as the lung and the mammary gland, making this coinfection an interesting field that warrants further research for a better comprehension of the pathogenesis of both diseases.
  • PublicationOpen Access
    Expression analysis of lung miRNAs responding to ovine VM virus infection by RNA-seq
    (BioMed Central, 2019) Bilbao Arribas, Martin; Abendaño, Naiara; Varela Martínez, Endika; Reina Arias, Ramsés; Andrés Cara, Damián de; Jugo, Begoña M.; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua
    Background: MicroRNAs (miRNAs) are short endogenous, single-stranded, noncoding small RNA molecules of approximately 22 nucleotides in length. They regulate gene expression posttranscriptionally by silencing mRNA expression, thus orchestrating many physiological processes. The Small Ruminant Lentiviruses (SRLV) group includes the Visna Maedi Virus (VMV) and Caprine Arthritis Encephalitis (CAEV) viruses, which cause a disease in sheep and goats characterized by pneumonia, mastitis, arthritis and encephalitis. Their main target cells are from the monocyte/macrophage lineage. To date, there are no studies on the role of miRNAs in this viral disease. Results: Using RNA-seq technology and bioinformatics analysis, the expression levels of miRNAs during different clinical stages of infection were studied. A total of 212 miRNAs were identified, of which 46 were conserved sequences in other species but found for the first time in sheep, and 12 were completely novel. Differential expression analysis comparing the uninfected and seropositive groups showed changes in several miRNAs; however, no significant differences were detected between seropositive asymptomatic and diseased sheep. The robust increase in the expression level of oar-miR-21 is consistent with its increased expression in other viral diseases. Furthermore, the target prediction of the dysregulated miRNAs revealed that they control genes involved in proliferation-related signalling pathways, such as the PI3K-Akt, AMPK and ErbB pathways. Conclusions: To the best of our knowledge, this is the first study reporting miRNA profiling in sheep in response to SRLV infection. The known functions of oar-miR-21 as a regulator of inflammation and proliferation appear to be a possible cause of the lesions caused in the sheep's lungs. This miRNA could be an indicator for the severity of the lung lesions, or a putative target for therapeutic intervention.
  • PublicationOpen Access
    Study of compartmentalization in the visna clinical form of small ruminant lentivirus infection in sheep
    (BioMed Central, 2012) Ramírez Álvarez, Hugo; Reina Arias, Ramsés; Bertolotti, Luigi; Cenoz García, Amaia; Hernández, Mirna Margarita; San Román Aberasturi, Beatriz; Glaría Ezquer, Idoia; Andrés, Ximena de; Crespo Otano, Helena; Jauregui, Paula; Benavides, Julio; Polledo, Laura; Pérez, Valentín; García Marín, Juan F.; Rosati, Sergio; Amorena Zabalza, Beatriz; Andrés Cara, Damián de; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua; Gobierno de Navarra / Nafarroako Gobernua: IIQ010449.RI1; Gobierno de Navarra / Nafarroako Gobernua: IIQ14064.RI1; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Background: A central nervous system (CNS) disease outbreak caused by small ruminant lentiviruses (SRLV) has triggered interest in Spain due to the rapid onset of clinical signs and relevant production losses. In a previous study on this outbreak, the role of LTR in tropism was unclear and env encoded sequences, likely involved in tropism, were not investigated. This study aimed to analyze heterogeneity of SRLV Env regions - TM amino terminal and SU V4, C4 and V5 segments - in order to assess virus compartmentalization in CNS. Results: Eight Visna (neurologically) affected sheep of the outbreak were used. Of the 350 clones obtained after PCR amplification, 142 corresponded to CNS samples (spinal cord and choroid plexus) and the remaining to mammary gland, blood cells, bronchoalveolar lavage cells and/or lung. The diversity of the env sequences from CNS was 11.1-16.1% between animals and 0.35-11.6% within each animal, except in one animal presenting two sequence types (30% diversity) in the CNS (one grouping with those of the outbreak), indicative of CNS virus sequence heterogeneity. Outbreak sequences were of genotype A, clustering per animal and compartmentalizing in the animal tissues. No CNS specific signature patterns were found. Conclusions: Bayesian approach inferences suggested that proviruses from broncoalveolar lavage cells and peripheral blood mononuclear cells represented the common ancestors (infecting viruses) in the animal and that neuroinvasion in the outbreak involved microevolution after initial infection with an A-type strain. This study demonstrates virus compartmentalization in the CNS and other body tissues in sheep presenting the neurological form of SRLV infection.
  • PublicationOpen Access
    Lack of relationship between Visna/maedi infection and scrapie resistance genetic markers
    (Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), 2014) Salazar, Eider; Berriatua, Eduardo; Pérez, Marta María; Marín, Belén; Acín, Cristina; Martín Burriel, Inmaculada; Reina Arias, Ramsés; Andrés Cara, Damián de; Amorena Zabalza, Beatriz; Badiola, Juan José; Luján, Lluís; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua
    The relationship between Visna/maedi virus (VMV) antibody status and scrapie genetic resistance of 10,611 Rasa Aragonesa sheep from 17 flocks in Aragón (Spain) was investigated. The fifteen most common PRNP gene haplotypes and genotypes were identified and the genotypes were classified into the corresponding scrapie risk groups (groups 1 to 5). ARQ (93.3%) and ARR (31.8%) were the most common haplotypes and ARQ/ARQ (56%) and ARR/ARQ (25.6%) were the most common genotypes. The frequencies of scrapie risk groups 1, 2, 3, 4 and 5 were 3.3%, 27.3%, 63.5%, 1.2% and 4.8%, respectively. Overall Visna/maedi seroprevalence was 53% and flock seroprevalence ranged between 21-86%. A random effects logistic regression model indicated that sheep VMV serological status (outcome variable) was not associated with any particular scrapie risk group. Instead, VMV seropositivity progressively increased with age, was signif icantly greater in females compared to males and varied between flocks. The absence of a relationship between VMV infection and scrapie genotypes is important for VMV control and specifically for sheep participating in an ELISA-based Visna/maedi control program.