Echeverría Obanos, Andrés
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Echeverría Obanos
First Name
Andrés
person.page.departamento
Ciencias del Medio Natural
person.page.instituteName
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
2 results
Search Results
Now showing 1 - 2 of 2
Publication Open Access Root system of Medicago sativa and Medicago truncatula: drought effects on carbon metabolism(Springer, 2021-03-18) Echeverría Obanos, Andrés; González García, Esther; Ciencias; Zientziak; Institute for Multidisciplinary Research in Applied Biology - IMABAims: Here, we assess the differential impact of drought on root carbon metabolism in the widely cultivated alfalfa (Medicago sativa, Ms) and the model legume Medicago truncatula (Mt). Understanding how carbon allocation is regulated under drought stress conditions is a central issue to improving alfalfa productivity under future climate change scenarios. Methods: Alfalfa and Medicago truncatula were compared under water deficit conditions. Root carbon metabolism of the taproot and fibrous roots was analysed. M. truncatula drought tolerance variability was compared to that of alfalfa using six accessions of the Medicago Hapmap project. The prominent taproot is much less developed in M. truncatula than in alfalfa with the former exhibiting an extensive fibrous root system. Results: In both examined Medicago species the taproot contained the major pools of soluble protein, sucrose and pinitol, whereas the major pools of hexoses and carbon metabolism enzymes appeared to be in the fibrous roots. Under water-deficit conditions, the response of M. sativa strongly differed from that of M. truncatula at the root level. Conclusions: Water deficit conditions differentially modulate the root carbon metabolism of M. sativa and M. truncatula. Mt maintained a more active carbon metabolism in the fibRs, as sucrose, myo-inositol and pinitol accumulated to cope with the water deficit (WD). Conversely, the root system of Ms did not accumulate cyclitols and carbon metabolism was more severely affected under water deficit conditions. This differentially exerted control may determine the drought response of these two close relatives.Publication Open Access Medicago sativa and Medicago truncatula show contrasting root metabolic responses to drought(Frontiers Media, 2021) Echeverría Obanos, Andrés; Larrainzar Rodríguez, Estíbaliz; Li, Weiqiang; Watanabe, Yasuko; Sato, Muneo; Tran, Cuong Duy; Moler Cuiral, José Antonio; Hirai, Masami; Sawada, Yuji; Tran, Lam-Son; González García, Esther; Institute for Multidisciplinary Research in Applied Biology - IMAB; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Gobierno de Navarra / Nafarroako Gobernua; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaDrought is an environmental stressor that affects crop yield worldwide. Understandingplant physiological responses to stress conditions is needed to secure food in futureclimate conditions. In this study, we applied a combination of plant physiology andmetabolomic techniques to understand plant responses to progressive water deficitfocusing on the root system. We chose two legume plants with contrasting toleranceto drought, the widely cultivated alfalfa Medicago sativa (Ms) and the model legume Medicago truncatula (Mt) for comparative analysis. Ms taproot (tapR) and Mt fibrous root (fibR) biomass increased during drought, while a progressive decline in wáter content was observed in both species. Metabolomic analysis allowed the identificationof key metabolites in the different tissues tested. Under drought, carbohydrates, abscisic acid, and proline predominantly accumulated in leaves and tapRs, whereas flavonoids increased in fibRs in both species. Raffinose-family related metabolites accumulated during drought. Along with an accumulation of root sucrose in plants subjected to drought, both species showed a decrease in sucrose synthase (SUS) activity related to a reduction in the transcript level of SUS1, the main SUS gene. This study highlights the relevance of root carbon metabolism during drought conditions and provides evidence on the specific accumulation of metabolites throughout the root system.