Person: Villanueva Roldán, Pedro
Loading...
Email Address
person.page.identifierURI
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Villanueva Roldán
First Name
Pedro
person.page.departamento
Ingeniería
person.page.instituteName
ORCID
0000-0003-0865-3789
person.page.upna
2772
Name
22 results
Search Results
Now showing 1 - 10 of 22
Publication Open Access Modeling of MAG welding process using data mining techniques(AEIPRO, 2011) Villanueva Roldán, Pedro; Ibarra Murillo, Martín; Lostado Lorza, Rubén; Sanz García, Andrés; Ingeniería; IngeniaritzaLa fabricación de componentes mecánicos mediante soldadura eléctrica es un proceso que se lleva aplicando con éxito en diferentes sectores desde comienzos del siglo XX (Automoción, Construcción, Aeronáutica…). Este proceso de fabricación presenta siempre el inconveniente de inducir sobre el componente fabricado elevadísimas tensiones y deformaciones residuales, obligando a un mecanizado posterior hasta poder ajustar a las tolerancias de diseño. El mecanizado posterior supone siempre un sobrecoste en el precio total de fabricación del componente soldado, aumentando este según el grado de mecanizado requerido. En este trabajo se expone la experiencia adquirida en la modelización del proceso soldadura MAG mediante técnicas de Minería de Datos. El objetivo principal es encontrar modelos predictivos de deformaciones angulares y de los espesores de los cordones de las soldaduras en función de los parámetros de configuración de la máquina de soldeo (intensidad, velocidad, ángulos, etc.), así como identificar los factores mas influyentes en la generación de las tensiones y deformaciones residuales.Publication Open Access Benefits of aeronautical preform manufacturing through arc-directed energy deposition manufacturing(MDPI, 2023) Suárez, Alfredo; Ramiro, Pedro; Veiga Suárez, Fernando; Ballesteros Egüés, Tomás; Villanueva Roldán, Pedro; Ingeniería; IngeniaritzaThe paper introduces an innovative aerospace component production approach employing Wire Arc Additive Manufacturing (WAAM) technology to fabricate near-finished preforms from Ti6Al4V titanium. Tensile tests on WAAM Ti6Al4V workpieces demonstrated reliable mechanical properties, albeit with identified anisotropic behavior in horizontal samples, underscoring the need for optimization. This alternative manufacturing strategy addresses the challenges associated with machining forged preforms, marked by a high Buy To Fly (BTF) ratio (>10), leading to material wastage, prolonged machining durations, elevated tool expenses, and heightened waste and energy consumption. Additionally, logistical and storage costs are increased due to extended delivery timelines, exacerbated by supply issues related to the current unstable situation. The utilization of WAAM significantly mitigates initial BTF, preform costs, waste production, machining durations, and associated expenditures, while notably reducing lead times from months to mere hours. The novelty in this study lies in the application of Wire Arc Additive Manufacturing (WAAM) technology for the fabrication of titanium aircraft components. This approach includes a unique height compensation strategy and the implementation of various deposition strategies, such as single-seam, overlapping, and oscillating.Publication Open Access Design of an electromagnetic servo brake with ABS function(Trans Tech Publications, 2015) Lostado Lorza, Rubén; Somovilla Gómez, Fatima; Corral Bobadilla, Marina; Villanueva Roldán, Pedro; Fernández Martínez, Roberto; Ingeniería; IngeniaritzaPublication Open Access The integration of mechanical energy absorbers into rollover protective structures to improve the safety of agricultural tractors in the event of rollover(MDPI, 2024) Alfaro López, José Ramón; Pérez Ezcurdia, Amaya; Latorre Biel, Juan Ignacio; Arana Navarro, Ignacio; Benito Amurrio, Marta; Villanueva Roldán, Pedro; Ingeniería; Ingeniaritza; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, PJUPNA1912The combination of safety belts and rollover protective structures (ROPSs) is key in improving the safety of agricultural tractors in the event of rollover. However, we also have the opportunity to enhance the security provided by each ROPS; one such example is the combination of this safety device with adequate mechanical energy absorbers (MEAs). Inexpensive disc-shaped MEAs can be included in the anchoring points of a ROPS onto the chassis of a tractor. Three configurations of ROPS combined with MEAs were tested during the application of loads that simulated the effects of side rollover in the vehicle. The tested configurations included a blank MEA as a reference case alongside a single MEA and a stack assembly containing both elements. The results of the tests show that both the deformation of the ROPS itself and the strain energy are larger in the case of blank MEAs; thus, there is also a risk that the clearance zone will be infringed upon and that the protective structure will collapse. We can conclude that the implementation of an appropriate MEA in ROPS reduces the deformation of the ROPS itself and its strain energy in cases of vehicle rollover; hence, the safety provided by such protection systems may be improved at a low cost.Publication Open Access Morphological design of a bicycle propulsion component using the hierarchical analysis process (AHP)(MDPI, 2023) Villanueva Roldán, Pedro; Bona, Sergio; Lostado Lorza, Rubén; Veiga Suárez, Fernando; Ingeniería; IngeniaritzaThere are many mechanical and/or electrical energy storage devices nowadays which can be mounted on standard bicycles. The current trend regarding bicycle energy storage devices is to develop and improve electrical and electronic systems that can ease transportation. However, this paper shows the design process of a purely mechanical energy storage device, with no electrical components, which instead aims to entertain the user, producing a stimulus related to speed and physical exertion. The mechanical device has been designed according to an aspect or fashion known as steampunk, so that the mechanical elements forming the device (springs and spur gears) are visible to the user. The storage and discharge of energy are only produced by the user. In order to charge the device, after reaching an appropriate speed, the user uses the pedals in reverse motion. Alternatively, the mechanism can also be charged with a controlled braking system by actuating on a crank. The design process was based on the total design of Pugh and the AHP and QFD techniques.Publication Open Access Project risk management methodology for small firms(Elsevier, 2014) Marcelino Sádaba, Sara; Pérez Ezcurdia, Amaya; Echeverría Lazcano, Amparo; Villanueva Roldán, Pedro; Ingeniaritza; Institute of Smart Cities - ISC; IngenieríaPublication Open Access Design and optimization of an electromagnetic servo braking system combining finite element analysis and weight-based multi-objective genetic algorithms(Springer, 2016) Lostado Lorza, Rubén; Villanueva Roldán, Pedro; Fernández Martínez, Roberto; Mac Donald, Bryan J.; Ingeniería; IngeniaritzaPublication Open Access Weld joint reconstruction and classification algorithm for trajectory generation in robotic welding(Trans Tech Publications, 2023) Curiel Braco, David; Veiga Suárez, Fernando; Suárez, Alfredo; Villanueva Roldán, Pedro; Aldalur, Eider; Ingeniería; IngeniaritzaPublication Open Access Mechanical properties dependency of the pearlite content of ductile iron(Association for Computational Materials Science and Surface Engineering, 2009) Gonzaga Jarquín, Rafael; Martínez Landa, Paulino; Pérez Ezcurdia, Amaya; Villanueva Roldán, Pedro; Ingeniería; IngeniaritzaPublication Open Access Automatic trajectory determination in automated robotic welding considering weld joint symmetry(MDPI, 2023) Curiel Braco, David; Veiga Suárez, Fernando; Suárez, Alfredo; Villanueva Roldán, Pedro; Aldalur, Eider; Ingeniería; IngeniaritzaThe field of inspection for welded structures is currently in a state of rapid transformation driven by a convergence of global technological, regulatory, and economic factors. This evolution is propelled by several key drivers, including the introduction of novel materials and welding processes, continuous advancements in inspection technologies, innovative approaches to weld acceptance code philosophy and certification procedures, growing demands for cost-effectiveness and production quality, and the imperative to extend the lifespan of aging structures. Foremost among the challenges faced by producers today is the imperative to meet customer demands, which entails addressing both their explicit and implicit needs. Furthermore, the integration of emerging materials and technologies necessitates the exploration of fresh solutions. These solutions aim to enhance inspection process efficiency while providing precise quantitative insights into defect identification and location. To this end, our project proposes cutting-edge technologies, some of which have yet to gain approval within the sector. Noteworthy among these innovations is the integration of vision systems into welding robots, among other solutions. This paper introduces a groundbreaking algorithm for tool path selection, leveraging profile scanning and the concept of joint symmetry. The application of symmetry principles for trajectory determination represents a pioneering approach within this expansive field.
- «
- 1 (current)
- 2
- 3
- »