Arregui Odériz, Luis Miguel

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Arregui Odériz

First Name

Luis Miguel

person.page.departamento

Agronomía, Biotecnología y Alimentación

person.page.instituteName

IS-FOOD. Research Institute on Innovation & Sustainable Development in Food Chain

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 2 of 2
  • PublicationOpen Access
    Soil moisture modulates biological nitrification inhibitors release in sorghum plants
    (Springer, 2023) Bozal-Leorri, Adrián; Arregui Odériz, Luis Miguel; Torralbo, Fernando; González Moro, María Begoña; González Murua, Carmen; Aparicio Tejo, Pedro María; Institute on Innovation and Sustainable Development in Food Chain - ISFOOD; Institute for Multidisciplinary Research in Applied Biology - IMAB
    Background and aims: Sorghum (Sorghum bicolor) is able to exude allelochemicals with biological nitrifcation inhibition (BNI) capacity. Therefore, sorghum might be an option as cover crop since its BNI ability may reduce N pollution in the following crop due to a decreased nitrifcation. However, BNI exudation is related to the physiological state and development of the plant, so abiotic stresses such as drought might modify the rate of BNI exudation. Hence, the objective was to determine the efect of drought stress on sorghum plants’ BNI release. Methods: The residual efects of sorghum crops over ammonia-oxidizing bacteria (AOB) were monitored in a 3-year feld experiment. In a controlled-conditions experiment, sorghum plants were grown under Watered (60% WFPS) or Moderate drought (30% WFPS) conditions, and fertilized with ammonium sulphate (A), ammonium sulphate+DMPP (A+D), or potassium nitrate (KNO3 −). Soil mineral N was determined, and AOB populations were quantifed. Additionally, plant biomass, isotopic discrimination of N and C, and photosynthetic parameters were measured in sorghum plants. Results: In the driest year, sorghum was able to reduce the AOB relative abundance by 50% at feld conditions. In the plant-soil microcosm, drought stress reduced leaf photosynthetic parameters, which had an impact on plant biomass. Under these conditions, sorghum plants exposed to Moderate drought reduced the AOB abundance of A treatment by 25% compared to Watered treatment. Conclusion: The release of BNI by sorghum under limited water conditions might ensure high soil NH4 +-N pool for crop uptake due to a reduction of nitrifying microorganisms.
  • PublicationOpen Access
    Biological and synthetic approaches to inhibiting nitrification in non-tilled Mediterranean soils
    (SpringerOpen, 2021) Bozal-Leorri, Adrián; Corrochano Monsalve, Mario; Arregui Odériz, Luis Miguel; Aparicio Tejo, Pedro María; González Murua, Carmen; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta Elikadura; Ciencias; Zientziak
    Background: The increasing demand for food production has led to a tenfold increase in nitrogen (N) fertilizer use since the Green Revolution. Nowadays, agricultural soils have been turned into high-nitrifying environments that increase N pollution. To decrease N losses, synthetic nitrification inhibitors (SNIs) such as 3,4-dimethylpyrazole phosphate (DMPP) have been developed. However, SNIs are not widely adopted by farmers due to their biologically limited stability and soil mobility. On the other hand, allelopathic substances from root exudates from crops such as sorghum are known for their activity as biological nitrification inhibitors (BNIs). These substances are released directly into the rhizosphere. Nevertheless, BNI exudation could be modified or even suppressed if crop development is affected. In this work, we compare the performance of biological (sorghum crop) and synthetic (DMPP) nitrification inhibitors in field conditions. Results: Sorghum crop BNIs and DMPP prevented an increase in the abundance of ammonia-oxidizing bacteria (AOB) without affecting the total bacterial abundance. Both nitrification inhibitors maintained similar soil NH4+ content, but at 30 days post-fertilization (DPF), the sorghum BNIs resulted in higher soil NO3− content than DMPP. Even so, these inhibitors managed to reduce 64% and 96%, respectively, of the NO3−-N/NH4+-N ratio compared to the control treatment. Similar to soil mineral N, there were no differences in leaf δ15N values between the two nitrification inhibitors, yet at 30 DPF, δ15N values from sorghum BNI were more positive than those of DMPP. N2O emissions from DMPP-treated soil were low throughout the experiment. Nevertheless, while sorghum BNIs also maintained low N2O emissions, they were associated with a substantial N2O emission peak at 3 DPF that lasted until 7 DPF. Conclusions: Our results indicate that while sorghum root exudates can reduce nitrification in field soil, even at the same efficiency as DMPP for a certain amount of time, they are not able to prevent the N pollution derived from N fertilization as DMPP does during the entire experiment.