Izco Berastegui, Irene

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Izco Berastegui

First Name

Irene

person.page.departamento

Estadística, Informática y Matemáticas

person.page.instituteName

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 2 of 2
  • PublicationEmbargo
    Optimal charging station deployment for drone-assisted delivery
    (Springer, 2025-01-31) Izco Berastegui, Irene; Serrano Hernández, Adrián; Faulín Fajardo, Javier; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Last-mile delivery of goods made by drones is considered to be in its experimental phase. Nevertheless, international enterprises such as Amazon, Google, UPS or DHL are expanding new unmanned aerial vehicle technologies related to delivery issues. Flight range of drones is compromised due to the limited battery capacity and the payload of delivered parcels. This challenge is addressed through the placement of charging stations where drone batteries are recharged. As assignment issues have not yet received much attention in the literature, this study will focus on designing drone assignment strategies through optimization. The optimization aims at minimizing charging station installation costs, drone energy consumption, and operational costs. The aim of this work is to design a model to determine the optimal number of the drone hubs, along with their configuration. Moreover, we will determine their location and size, allocating the customer demands to stations and dimensioning the drones¿ fleet in each station to deliver packages efficiently.
  • PublicationOpen Access
    Topology effects in drone parcel delivery
    (Cal-Tek srl, 2024) Izco Berastegui, Irene; Serrano Hernández, Adrián; Faulín Fajardo, Javier; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, PJUPNA26-2022
    Despite the positive sustainability prospects of drones, their flight range is compromised due to their limited battery capacity and the payload of delivered parcels. An alternative to address this challenge is the placement of charging stations where drone batteries are recharged to expand their flying range. The aim of this work is determining the number and location of drone charging stations for topology-dependent scenarios: rural areas and densely populated urban areas. To the best of the researchers' knowledge, there is currently no existing study in the literature that specifically investigates the impacts of topology on drone-assisted delivery. This study focuses on designing drone assignment strategies through optimization-simulation, aiming at minimizing charging station installation costs and operational costs and as a novelty, drone battery consumption is considered in the model design. Drone delivery order instances with different sizes and spatial distributions are generated to simulate realistic scenarios of demand and evaluate the optimization model to allocate the customer demands to stations and dimensioning drones fleet. Results show that considering parcel weight and flight distance has a significant impact on the performance of drone allocation to stations and highlight the effects of topology in the implementation of a drone-assisted delivery network.