Person:
Li, Jun

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Li

First Name

Jun

person.page.departamento

Instituto de Agrobiotecnología (IdAB)

person.page.instituteName

ORCID

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 2 of 2
  • PublicationOpen Access
    Sucrose synthase activity in the sus1/sus2/sus3/sus4 Arabidopsis mutant is sufficient to support normal cellulose and starch production
    (National Academy of Sciences, 2011) Baroja Fernández, Edurne; Muñoz Pérez, Francisco José; Li, Jun; Bahaji, Abdellatif; Almagro Zabalza, Goizeder; Montero Macarro, Manuel; Etxeberria, Ed; Hidalgo Cruz, Maite; Sesma Pascual, María Teresa; Pozueta Romero, Javier; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Sucrose synthase (SUS) catalyzes the reversible conversion of sucrose and a nucleoside diphosphate into the corresponding nucleoside diphosphate-glucose and fructose. In Arabidopsis, a multigene family encodes six SUS (SUS1-6) isoforms. The involvement of SUS in the synthesis of UDP-glucose and ADP-glucose linked to Arabidopsis cellulose and starch biosynthesis, respectively, has been questioned by Barratt et al. [(2009) Proc Natl Acad Sci USA 106:13124–13129], who showed that (i) SUS activity in wild type (WT) leaves is too low to account for normal rate of starch accumulation in Arabidopsis, and (ii) different organs of the sus1/sus2/sus3/sus4 SUS mutant impaired in SUS activity accumulate WT levels of ADP-glucose, UDP-glucose, cellulose and starch. However, these authors assayed SUS activity under unfavorable pH conditions for the reaction. By using favorable pH conditions for assaying SUS activity, in this work we show that SUS activity in the cleavage direction is sufficient to support normal rate of starch accumulation in WT leaves. We also demonstrate that sus1/sus2/sus3/sus4 leaves display WT SUS5 and SUS6 expression levels, whereas leaves of the sus5/sus6 mutant display WT SUS1–4 expression levels. Furthermore, we show that SUS activity in leaves and stems of the sus1/sus2/sus3/sus4 and sus5/sus6 plants is ~85% of that of WT leaves, which can support normal cellulose and starch biosynthesis. The overall data disprove Barratt et al. (2009) claims, and are consistent with the possible involvement of SUS in cellulose and starch biosynthesis in Arabidopsis.
  • PublicationOpen Access
    Enhancing the expression of starch synthase class IV results in increased levels of both transitory and long-term storage starch
    (Wiley, 2011) Gámez-Arjona, Francisco M.; Li, Jun; Raynaud, Sandy; Baroja Fernández, Edurne; Muñoz Pérez, Francisco José; Ovecka, Miroslav; Ragel, Paula; Bahaji, Abdellatif; Pozueta Romero, Javier; Mérida, Ángel; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua
    Starch is an important renewable raw material with an increasing number of applications. Several attempts have been made to obtain plants that produce modified versions of starch or higher starch yield. Most of the approaches designed to increase the levels of starch have focused on the increment of the amount of ADP‐glucose or ATP available for starch biosynthesis. In this work, we show that the overexpression of starch synthase class IV (SSIV) increases the levels of starch accumulated in the leaves of Arabidopsis by 30%–40%. In addition, SSIV‐overexpressing lines display a higher rate of growth. The increase in starch content as a consequence of enhanced SSIV expression is also observed in long‐term storage starch organs such as potato tubers. Overexpression of SSIV in potato leads to increased tuber starch content on a dry weight basis and to increased yield of starch production in terms of tons of starch/hectare. These results identify SSIV as one of the regulatory steps involved in the control of the amount of starch accumulated in plastids.