Person:
Casi Satrústegui, Álvaro

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Casi Satrústegui

First Name

Álvaro

person.page.departamento

Ingeniería

person.page.instituteName

ISC. Institute of Smart Cities

ORCID

0000-0001-5459-7613

person.page.upna

811627

Name

Search Results

Now showing 1 - 3 of 3
  • PublicationOpen Access
    Impact of a thermoelectric subcooler heat exchanger on a carbon dioxide transcritical refrigeration facility
    (Elsevier, 2022) Casi Satrústegui, Álvaro; Aranguren Garacochea, Patricia; Araiz Vega, Miguel; Alegría Cía, Patricia; Astrain Ulibarrena, David; Ingeniaritza; Institute of Smart Cities - ISC; Ingeniería; Gobierno de Navarra / Nafarroako Gobernua; Universidad Pública de Navarra / Nafarroako Unibertsita
    To improve the performance of vapour compression refrigeration cycles, the inclusion of a thermoelectric subcooler for low-medium power units has been the focus of recent studies due to its robustness, compactness and simplicity of operation. In thermoelectric systems, it has been demonstrated that the heat exchangers used in the hot and cold side of the thermoelectric modules have a critical impact in the performance of the system. This influence has not yet been studied for thermoelectric subcooling systems in vapour compression cycles. This work, for the first time, evaluates the impact that the heat exchangers of a thermoelectric subcooler, included in a transcritical carbon dioxide refrigeration cycle, have, in the performance of the refrigeration cycle. The influence is quantified in terms of: optimum working conditions, coefficient of performance and cooling capacity. The results show that, through an optimization of the heat exchangers of the thermoelectric subcooler, the performance improvements on the coefficient of performance using this technology are boosted from 11.96 to 14.75 % and the upgrade in the cooling capacity of the system rises from 21.4 to 26.3 %. Moreover, the optimum gas-cooler working pressure of the system is reduced and the optimum voltage supplied to the thermoelectric modules increases.
  • PublicationOpen Access
    Experimental evaluation of a transcritical CO2 refrigeration facility working with an internal heat exchanger and a thermoelectric subcooler: performance assessment and comparative
    (Elsevier, 2022) Casi Satrústegui, Álvaro; Aranguren Garacochea, Patricia; Araiz Vega, Miguel; Sánchez, Daniel; Cabello, Ramón; Astrain Ulibarrena, David; Ingeniería; Ingeniaritza; Gobierno de Navarra / Nafarroako Gobernua; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    The use of carbon dioxide in transcritical state has become one of the most used solutions to comply with the F-Gas directive and reduce greenhouse gases emissions from refrigeration systems at high ambient temperatures. For low-medium power units, the commonly used solutions to improve the efficiency such as the ejector, multiple compressor arrangements, mechanical subcooler, etc., add complexity and increase the cost of the refrigeration facility, which is not ideal for small units. In this low-medium power range, two technologies stand out to increase the performance of a carbon dioxide transcritical cycle: the internal heat exchanger and the thermoelectric subcooler. This study brings a complete research in which both solutions have been tested in the same experimental transcritical carbon dioxide refrigeration facility under the same working conditions. It focuses on the real performance of both systems and discusses the strengths and weaknesses of using an internal heat exchanger or a thermoelectric subcooler. The results show that the thermoelectric subcooler outperforms the internal heat exchanger in both the coefficient of performance and the cooling capacity while also being a more controllable and flexible solution.
  • PublicationOpen Access
    Experimental enhancement of a CO2 transcritical refrigerating plant including thermoelectric subcooling
    (Elsevier, 2020) Sánchez, Daniel; Aranguren Garacochea, Patricia; Casi Satrústegui, Álvaro; Llopis, R.; Cabello, Ramón; Astrain Ulibarrena, David; Ingeniería; Ingeniaritza
    CO2 is an excellent natural refrigerant that can be used in almost any commercial cooling application thanks to its useful range of evaporative temperatures and excellent environmental properties. However, due to its low critical temperature, CO2 has an important issue related to the low performance of the simplest transcritical refrigeration cycle. To overcome it, the subcooling technique is a well-known method to improve the energy performance of any refrigeration cycle especially the CO2 transcritical one. The IHX is a widely used example of this method that is implemented in almost all standalone systems that use CO2 as a refrigerant. As an alternative of this element, in this work, a thermoelectric subcooling system is presented and tested in a CO2 transcritical refrigerating plant. The experimental tests have been performed at two ambient temperatures: 25 and 30 degrees C, maintaining a constant evaporating level at-10 degrees C and varying the voltage supply to thermoelectric modules and the heat rejection pressure. The results from these experimental tests revealed that the COP and the cooling capacity of the refrigerating plant can be enhanced up to 9.9% and 16.0%, respectively, operating at the optimum operating conditions. Moreover, the experimental tests corroborate the existence of an optimum voltage which maximizes the COP, and the almost linear capacity regulation easily adjustable by varying the voltage supply.