Gallego Martínez, Elieser Ernesto
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Gallego Martínez
First Name
Elieser Ernesto
person.page.departamento
Ingeniería Eléctrica, Electrónica y de Comunicación
person.page.instituteName
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
2 results
Search Results
Now showing 1 - 2 of 2
Publication Open Access Increasing the sensitivity of an optic level sensor with a wavelength and phase sensitive single-mode multimode single-mode (SMS) fiber structure(IEEE, 2017) Fuentes Lorenzo, Omar; Del Villar, Ignacio; Vento Álvarez, José Raúl; Socorro Leránoz, Abián Bentor; Gallego Martínez, Elieser Ernesto; Corres Sanz, Jesús María; Matías Maestro, Ignacio; Ingeniaritza Elektrikoa eta Elektronikoa; Institute of Smart Cities - ISC; Ingeniería Eléctrica y ElectrónicaThe sensitivity of a liquid level sensor based on a single-mode-multimode-single-mode fiber structure has been increased by hydrofluoric acid etching. The etching process was analyzed and monitored both theoretical and experimentally, which permitted to observe that a sinusoidal spectrum can be obtained for low diameters. As an example, a 2.77 fold sensitivity increase was attained by etching from diameter 125 to 50 μm. Moreover, the sinusoidal shape of the optical spectrum permitted to monitor liquid level changes both in wavelength and phase. The cross sensitivity of the sensor to refractive index and temperature was also studied.Publication Open Access Nanofabrication of phase-shifted Bragg gratings on the end facet of multimode fiber towards development of optical filters and sensors(Elsevier, 2018) Gallego Martínez, Elieser Ernesto; Ascorbe Muruzabal, Joaquín; Del Villar, Ignacio; Corres Sanz, Jesús María; Matías Maestro, Ignacio; Ingeniaritza Elektrikoa eta Elektronikoa; Institute of Smart Cities - ISC; Ingeniería Eléctrica y ElectrónicaThis work describes the process of nanofabrication of phase-shifted Bragg gratings on the end facet of a multimode optical fiber with a pulsed DC sputtering system based on a single target. Several structures have been explored as a function of parameters such as the number of layers or the phase-shift. The experimental results, corroborated with simulations based on plane-wave propagation in a stack of homogeneous layers, indicate that the phase-shift can be controlled with a high degree of accuracy. The device could be used both in communications, as a filter, or in the sensors domain. As an example of application, a humidity sensor with wavelength shifts of 12 nm in the range of 30 to 90% relative humidity (200 pm/% relative humidity) is presented.