Person: Castellano Aldave, Jesús Carlos
Loading...
Email Address
person.page.identifierURI
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Castellano Aldave
First Name
Jesús Carlos
person.page.departamento
Ingeniería Eléctrica, Electrónica y de Comunicación
person.page.instituteName
ORCID
0000-0003-4376-1814
person.page.upna
TA65304
Name
3 results
Search Results
Now showing 1 - 3 of 3
Publication Open Access Ultra low-frequency energy harvester for SHM sensors in wind turbines(2024) Castellano Aldave, Jesús Carlos; Carlosena García, Alfonso; López Martín, Antonio; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektriko eta Elektronikoaren eta Komunikazio IngeniaritzarenEn este proyecto de tesis multidisciplinar, proponemos el diseño completo, la implementación y la caracterización experimental de una familia de dispositivos de captación de energía residual para alimentar nodos sensores autónomos que monitorizan la salud estructural de los aerogeneradores. Presentamos soluciones innovadoras para aprovechar la energía de las vibraciones inherentes a estas estructuras y convertirlas posteriormente en energía eléctrica utilizable. Para ello se utilizan elementos mecánicos que captan el movimiento vibratorio, componentes electromagnéticos para su transducción a energía eléctrica aprovechable así como circuitos electrónicos para el acondicionamiento de la señal. Las especificaciones propuestas incluyen la funcionalidad con excitaciones en cualquier dirección del plano horizontal, pequeñas aceleraciones por debajo de 0, 1 g y frecuencias muy bajas por debajo de 1Hz. Los dispositivos deben ser compactos para facilitar su manejo y colocación. Para predecir con exactitud el funcionamiento en condiciones de excitación arbitrarias, hemos desarrollado dos modelos matemáticos de interacción electromecánica. El primero es un modelo físico basado en ecuaciones diferenciales que describen el movimiento mecánico bajo las excitaciones previstas y la interacción elástica en términos de un modelo magnético dipolar. La amortiguación se supone viscosa y los parámetros básicos del modelo se ajustan empíricamente. El segundo enfoque de modelización se basa en datos y considera la interacción electromagnética entre imanes y bobinas en movimiento. La amortiguación se modela con mayor precisión distinguiendo entre amortiguación por fricción y electromagnética. Para evaluar los parámetros asociados junto con otros parámetros no físicos en juego, se presenta un procedimiento de identificación. Ha sido necesario diseñar e implementar un montaje experimental ad-hoc, descrito en la tesis, capaz de medir todas las magnitudes necesarias para una correcta identificación. Dadas las particularidades de los captadores de baja frecuencia propuestos, se necesitan soluciones específicas para convertir la energía eléctrica generada en corriente continua utilizable por los nodos sensores. Presentamos dos novedosos elevadores/convertidores AC-DC capaces de operar con tensiones de entrada muy bajas (decenas de milivoltios) y con cualquier polaridad. Se basan en osciladores clásicos modificados para adaptarse a la aplicación. Los harvesters descritos en esta tesis se han caracterizado a fondo experimentalmente en el laboratorio y uno de ellos se está probando sobre el terreno en la góndola de un aerogenerador. Un análisis comparativo de nuestros harvesters con respecto a los pocos que trabajan en condiciones similares, revela un comportamiento muy competitivo. Sin embargo, la potencia generada en la prueba de campo es demasiado baja para alcanzar el objetivo de alimentar un nodo sensor.Publication Open Access Low-frequency electromagnetic harvester for wind turbine vibrations(Elsevier, 2024) Castellano Aldave, Jesús Carlos; Plaza Puértolas, Aitor; Iriarte Goñi, Xabier; Carlosena García, Alfonso; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISC; Ingeniería; Ingeniaritza; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaIn this paper we describe and fully characterize a novel vibration harvester intended to harness energy from the vibration of a wind turbine (WT), to potentially supply power to sensing nodes oriented to structural health monitoring (SHM). The harvester is based on electromagnetic conversion (EM) and can work with vibrations of ultra-low frequencies in any direction of a plane. The harvester bases on a first prototype already disclosed by the authors, but in this paper, we develop an accurate model parameterized by a combination of physical parameters and others related to the geometry of the device. The model allows predicting not only the power generation capabilities, but also the kinematic behaviour of the harvester. Model parameters are estimated by an identification procedure and validated experimentally. Last, the harvester is tested in real conditions on a wind turbine.Publication Open Access Ultra-low frequency multidirectional harvester for wind turbines(Elsevier, 2023) Castellano Aldave, Jesús Carlos; Carlosena García, Alfonso; Iriarte Goñi, Xabier; Plaza Puértolas, Aitor; Ingeniería; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaIn this paper we propose, and demonstrate through a prototype, a completely novel device able to harvest mechanical energy from the multidirectional vibrations in a wind turbine, and convert it into electrical, to power autonomous sensors. The application is very challenging since vibrations are of ultra-low frequency, well below 1 Hz, with accelerations of tenths of cm/s2 (0.01 g), and the device must capture energy from the movement in any direction. According to our experiments, the device is capable to generate average powers around the milliwatt in the operation conditions of a wind turbine, which are enough for some very-low power sensor nodes, or at least to considerably extend the life-time of batteries. The device is based on the principle of moving (inertial) masses comprised of magnets in Hallbach arrays interacting with coils, and can work for movements on any direction of a plane. To the best of our knowledge, this is the first device specifically proposed for wind turbines and one of the few that work in such low frequencies, and capture energy from movements on any direction on a plane. Only three harvesters proposed in the literature, intended for distinct applications, can work at such low frequencies, and our device exhibits a better efficiency. Though comparisons with harvesters working in different contexts and, even using different conversion principles, is not completely fair, we make in this paper a comparison to the closest ones, resorting to two different figures of merit.