Torrez Herrera, Jonathan Josué

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Torrez Herrera

First Name

Jonathan Josué

person.page.departamento

Ciencias

person.page.instituteName

ORCID

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 2 of 2
  • PublicationOpen Access
    Evidence for the synthesis of La-hexaaluminate from aluminum-containing saline slag wastes: correction of structural defects and phase purification at low temperature
    (Elsevier, 2021) Torrez Herrera, Jonathan Josué; Fuentes Ordóñez, Edwin Gustavo; Korili, Sophia A.; Gil Bravo, Antonio; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Ciencias; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    The synthesis of a lanthanum hexaaluminate from the aluminum extracted from a saline slag waste is presented for the first time. Briefly, a refluxing 2 M solution of HCl is used to extract the aluminum, giving 8.9 gAl/dm3 along with other metals in lower concentrations. This solution is used to synthesize the hexaaluminate by mixing with a stoichiometric amount of lanthanum nitrate. The results showed the formation of pure phase hexaaluminate at 1473 K, as well as predominance of the hexaaluminate phase at temperatures of 1273 and 1373 K. These results also indicate that the pure hexaaluminate phase can be obtained at a much lower temperature than when commercial aluminum solutions are used improving the applications as catalyst and thermal barrier material. It was also found that the presence of other metals in solution allows the structural problems and purity of the La-hexaaluminate phase to be corrected when working with stoichiometric ratios.
  • PublicationEmbargo
    Development of Ni/Lahexaaluminates from aluminum saline slags applied as catalysts in the dry reforming of methane
    (2021) Torrez Herrera, Jonathan Josué; Gil Bravo, Antonio; Korili, Sophia A.; Química Aplicada; Kimika Aplikatua
    The general objective of this work is to study the synthesis methods, structural and morphological behavior of hexaaluminates and their performance as catalysts in the dry reforming reaction of methane from aluminum salt slags. Specific objectives: 1. Valorize the saline slag of aluminum and mitigate its polluting effect. 2. Obtaining an optimal method for the synthesis of hexaaluminates from salt slags. 3. Evaluation of the performance and applicability of catalysts in the dry reforming reaction. 4. Determination of the optimal operating parameters of the catalysts. 5. Determination of efficiency and comparison with catalysts synthesized with commercial precursors.