Simón de Goñi, Oihane
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Simón de Goñi
First Name
Oihane
person.page.departamento
Agronomía, Biotecnología y Alimentación
person.page.instituteName
IMAB. Research Institute for Multidisciplinary Applied Biology
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
2 results
Search Results
Now showing 1 - 2 of 2
Publication Open Access Mixtures of complete and pif1- and pif2-deficient genotypes are required for increased potency of an insect nucleopolyhedrovirus(American Society for Microbiology, 2009) Clavijo Palacios, Gabriel; Williams, Trevor; Simón de Goñi, Oihane; Muñoz Labiano, Delia; Cerutti, Martine; López Ferber, Miguel; Caballero Murillo, Primitivo; Nekazaritza Ekoizpena; Producción Agraria; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako InstitutuaThe insecticidal potency of a nucleopolyhedrovirus population (SfNIC) that infects Spodoptera frugiperda (Lepidoptera) is greater than the potency of any of the component genotypes alone. Occlusion bodies (OBs) produced in mixed infections comprising the complete genotype and a deletion genotype are as pathogenic as the natural population of genotypes from the field. To test whether this increased potency was due to the deletion or to some other characteristic of the deletion variant genome, we used the SfNIC-B genome to construct a recombinant virus (SfNIC-BΔ16K) with the same 16.4-kb deletion as that observed in SfNIC-C and another recombinant (SfNIC-BΔpifs) with a deletion encompassing two adjacent genes (pif1 and pif2) that are essential for transmission per os. Mixtures comprising SfNIC-B and SfNIC-B 16K in OB ratios that varied between 10:90 and 90:10 were injected into insects, and the progeny OBs were fed to larvae in an insecticidal potency assay. A densitometric analysis of PCR products indicated that SfNIC-B was generally more abundant than expected in mixtures based on the proportions of OBs used to produce the inocula. Mixtures derived from OB ratios of 10, 25, or 50% of SfNIC-BΔ16K and the corresponding SfNIC-B proportions showed a significant increase in potency compared to SfNIC-B alone. The results of potency assays with mixtures comprising various proportions of SfNIC-B plus SfNIC-BΔpifs were almost identical to the results observed with SfNICB 16K, indicating that deletion of the pif gene region was responsible for the increased potency observed in mixtures of SfNIC-B and each deletion recombinant virus. Subsequently, mixtures produced from OB ratios involving 10 or 90% of SfNIC-BΔ16K with the corresponding proportions of SfNIC-B were subjected to four rounds of per os transmission in larvae. The composition of each experimental mixture rapidly converged to a common equilibrium with a genotypic composition of ~85% SfNIC-B plus 15% SfNIC-BΔ16K. Nearly identical results were observed in peroral-passage experiments involving mixtures of SfNIC-B plus SfNICBΔpifs. We conclude that (i) the deletion of the pif1 and pif2 region is necessary and sufficient to explain the increased potency observed in mixtures of complete and deletion genotypes and (ii) viral populations with decreased ratios of pif1- and pif2-deficient genotypes in the virus population increase the potency of genotypic mixtures and are likely to positively influence the transmission of this pathogen.Publication Open Access Sf29 Gene of Spodoptera frugiperda multiple nucleopolyhedrovirus is a viral factor that determines the number of virions in occlusion bodies(American Society for Microbiology, 2008) Simón de Goñi, Oihane; Williams, Trevor; Asensio, Aarón C.; Ros Terés, Sarhay; Gaya Cacho, Andrea; Caballero Murillo, Primitivo; Possee, Robert D.; Nekazaritza Ekoizpena; Producción Agraria; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako InstitutuaThe genome of Spodoptera frugiperda multiple nucleopolyhedrovirus (NPV) was inserted into a bacmid (Sfbac) and used to produce a mutant lacking open reading frame 29 (Sf29null). Sf29null bacmid DNA was able to generate an infection in S. frugiperda. Approximately six times less DNA was present in occlusion bodies (OBs) produced by the Sf29null bacmid in comparison to viruses containing this gene. This reduction in DNA content was consistent with fewer virus particles being packaged within Sf29null bacmid OBs, as determined by fractionation of dissolved polyhedra and comparison of occlusion-derived virus (ODV) infectivity in cell culture. DNA from Sfbac, Sf29null, or Sf29null-repair, in which the gene deletion had been repaired, were equally infectious when used to transfect S. frugiperda. All three viruses produced similar numbers of OBs, although those from Sf29null were 10-fold less infectious than viruses with the gene. Insects infected with Sf29null bacmid died 24 h later than positive controls, consistent with the reduced virus particle content of Sf29null OBs. Transcripts from Sf29 were detected in infected insects 12 h prior to those from the polyhedrin gene. Homologs to Sf29 were present in other group II NPVs, and similar sequences were present in entomopoxviruses. Analysis of the Sf29 predicted protein sequence revealed signal peptide and transmembrane domains, but the presence of 12 potential N-glycosylation sites suggest that it is not an ODV envelope protein. Other motifs, including zinc-binding and threonine-rich regions, suggest degradation and adhesion functions. We conclude that Sf29 is a viral factor that determines the number of ODVs occluded in each OB.