Person:
Imbert Rodríguez, Bosco

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Imbert Rodríguez

First Name

Bosco

person.page.departamento

Ciencias

person.page.instituteName

IMAB. Research Institute for Multidisciplinary Applied Biology

ORCID

0000-0002-9402-4569

person.page.upna

2374

Name

Search Results

Now showing 1 - 10 of 18
  • PublicationOpen Access
    Synergies between climate change, biodiversity, ecosystem function and services, indirect drivers of change and human well-being in forests
    (Springer, 2021) Imbert Rodríguez, Bosco; Blanco Vaca, Juan Antonio; Candel Pérez, David; Lo, Yueh-Hsin; González de Andrés, Ester; Yeste Yeste, Antonio; Herrera Álvarez, Ximena; Rivadeneira Barba, Gabriela; Liu, Yang; Chang, Shih-Chieh; Ciencias; Zientziak
    Climate change is having impacts on the biodiversity and structure of many ecosystems. In this chapter, we focus on its impacts on forests. We will focus on how the potential climate change impacts on forest biodiversity and structure will have a reflection on the ecosystem services provided by forests, and therefore on the capacity of these ecosystems to support the Sustainable Development Goals set by the United Nations. The chapter will be organized in three sections, considering boreal, temperate, and tropical forests along each section. The first section will deal with the synergies or interactions between climate change, biodiversity, and ecosystem function with emphasis not only on plants but also on fungi, animals, and prokaryotes. Synergies between climate change and ecosystem services will be described and analyzed in the second section. To better link the first two sections, we will explore the relationships between ecosystem function, species traits, and ecosystem services. Finally, case studies for boreal, Mediterranean, and tropical forests will be presented, emphasizing the synergies between the above factors, the indirect drivers of change (demographic, economic, sociopolitical, science and technology, culture and religion), and human well-being (basic materials for a good life, health, good social relations, freedom of choice and actions) in forests.
  • PublicationOpen Access
    ¿Están los bosques mixtos pirenaicos de pino silvestre y haya en el camino hacia la saturación por nitrógeno?
    (Asociación Española de Ecología Terrestre, 2017) Blanco Vaca, Juan Antonio; San Emeterio Garciandía, Leticia; González de Andrés, Ester; Imbert Rodríguez, Bosco; Larrainzar Rodríguez, Estíbaliz; Peralta de Andrés, Francisco Javier; Lo, Yueh-Hsin; Castillo Martínez, Federico; Ciencias del Medio Natural; Natura Ingurunearen Zientziak
    Las actividades humanas causan altos niveles de deposición atmosférica crónica de N que pueden estar trastornando el ciclo del N en los bosques de los Pirineos occidentales. Para probar esta hipótesis, se han investigado los efectos de la deposición de N atmosférico en el ciclo de N en dos bosques mixtos de pino silvestre y haya en Navarra. Un bosque está situado a 1350 m de altitud y tiene un clima continental, mientras que el otro está situado a 650 m y tiene un clima mediterráneo húmedo. Pruebas preliminares indicaron una fijación biológica de N 2 atmosférico indetectable, así como la casi nula presencia de plantas con simbiontes fijadores como en la actividad de fijadores libres. Por lo tanto se asumió que la principal entrada de N en estos bosques es la deposición atmosférica. Se estimó la dependencia de la productividad de estos ecosistemas de la deposición por medio del modelo ecológico FORECAST, calibrado para estos sitios. Se simularon seis escenarios con tasas de deposición en un rango de 5 a 30 kg ha -1 año -1 . Los resultados indicaron que la productividad de estos bosques es dependiente de la deposición de N, pero indicios de saturación por N (aumento de lixiviación y carencia de aumento de productividad) indican que pueden saturarse a partir de 20-25 kg N ha -1 año -1 , unos 5-10 kg N ha -1 año -1 por encima de los niveles observados actualmente.
  • PublicationOpen Access
    Increased complementarity in water-limited environments in Scots pine and European beech mixtures under climate change
    (Wiley, 2017) González de Andrés, Ester; Seely, Brad; Blanco Vaca, Juan Antonio; Imbert Rodríguez, Bosco; Lo, Yueh-Hsin; Castillo Martínez, Federico; Ciencias del Medio Natural; Natura Ingurunearen Zientziak
    Management of mixedwoods is advocated as an effective adaptation strategy to increase ecosystem resiliency in the context of climate change. While mixedwoods have been shown to have greater resource use efficiency relative to pure stands, considerable uncertainty remains with respect to the underlying ecological processes. We explored species interactions in Scots pine / European beech mixedwoods with the process-based model FORECAST Climate. The model was calibrated for two contrasting forests in the southwestern Pyrenees (northern Spain): a wet Mediterranean site at 625 m.a.s.l. and a subalpine site at 1335 m.a.s.l. Predicted mixedwood yield was higher than that for beech stands but lower than pine stands. When simulating climate change, mixedwood yield was reduced at the Mediterranean site (-33%) but increased at the subalpine site (+11%). Interaction effects were enhanced as stands developed. Complementarity dominated the Mediterranean stand but neutral or net competition dominated the subalpine stand, which had higher stand density and water availability. Reduced water demand and consumption, increased canopy interception, and improved water-use efficiency in mixtures compared to beech stands suggest a release of beech intra-specific competition. Beech also facilitated pine growth through better litter quality, non-symbiotic nitrogen fixation and above- and belowground stratification, leading to higher foliar nitrogen content and deeper canopies in pines. In conclusion, mixtures may improve water availability and use efficiency for beech and light interception for pine, the main limiting factors for each species, respectively. Encouraging pine-beech mixtures could be an effective adaptation to climate change in drought-prone sites in the Mediterranean region.
  • PublicationOpen Access
    Changes in long-term light properties of a mixed conifer–broadleaf forest in Southwestern Europe
    (MDPI, 2021) Ruiz de la Cuesta Vela, Ignacio; Blanco Vaca, Juan Antonio; Imbert Rodríguez, Bosco; Peralta de Andrés, Francisco Javier; Rodríguez Pérez, Javier; Ciencias; Zientziak; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Natural and anthropogenic factors affect forest structure worldwide, primarily affecting forest canopy and its light properties. However, not only stand-replacing events modify canopy structure, but disturbances of lower intensity can also have important ecological implications. To study such effects, we analyzed long-term changes in light properties of a conifer–broadleaf mixed forest in the Southwestern Pyrenees, placed in the fringe between the Mediterranean and Eurosi- berian biogeographical regions. At this site, a thinning trial with different intensities (0%, 20%, and 30–40% basal area removed) took place in 1999 and 2009, windstorms affected some plots in 2009 and droughts were recurrent during the sampling period (2003, 2005, 2011). We monitored light properties during 14 years (2005–2019) with hemispherical photographs. We applied partial autocorrelation functions to determine if changes between years could be attributed to internal canopy changes or to external disturbances. In addition, we mapped the broadleaf canopy in 2003, 2008, and 2016 to calculate broadleaf canopy cover and richness at the sampling points with different buffer areas of in- creasing surface. We applied generalized linear mixed models to evaluate the effects of light variables on canopy richness and cover. We found that light variables had the most important changes during the period 2008 to 2010, reacting to the changes caused that year by the combined effects of wind and forest management. In addition, we found that an area of 4.0 m radius around the sampling points was the best to explain the relationship between light properties and species richness, whereas a radius of 1.0 m was enough to estimate the relationship between light and canopy cover. In addition, light-related variables such as diffuse light and leaf area index were related to species richness, whereas structural variables such as canopy openness were related to canopy cover. In summary, our study demonstrates that non stand-replacing disturbances such as windstorms, thinning, or droughts can have an important role in modifying structural and light-related canopy properties, which in turn may influence natural processes of stand development and ecological succession.
  • PublicationOpen Access
    Land use change effects on carbon and nitrogen stocks in the Pyrenees during the last 150 years: a modelling approach
    (Elsevier, 2015) Lo, Yueh-Hsin; Blanco Vaca, Juan Antonio; Canals Tresserras, Rosa María; González de Andrés, Ester; San Emeterio Garciandía, Leticia; Imbert Rodríguez, Bosco; Castillo Martínez, Federico; Ciencias del Medio Natural; Natura Ingurunearen Zientziak
    In the southern Pyrenees, human population and therefore land uses have changed from forests to pastures, then crops, and back to pastures and secondary forests during the last two centuries. To understand what such rapid land use changes have meant for carbon (C) and nitrogen (N) stocks, we used data from two forest sites in the western Pyrenees, combined with regional data on pastures and crop production (potato, cereal), to calibrate the ecosystem-level model FORECAST. Then, we simulated 150-year of land use for each site, emulating historical changes. Our estimates show that the conversion from forests into pastures and crops created C and N deficits (378-427 Mg C ha-1, 4.0-4.6 Mg N ha-1) from which these sites are still recovering. The main ecological process behind the creation of these deficits was the loss of the ecological legacy of soil organic matter (SOM) created by the forest, particularly during conversion to farming. Pastures were able to reverse, stop or at least slow down the loss of such legacy. In conclusion, our work shows the deep impact of historical land use in ecosystem attributes, both in magnitude of removed C and N stocks and in duration of such impact. Also, the usefulness of ecological modelling in absence of historical data to estimate such changes is showcased, providing a framework for potential C and N stocks to be reached by climate change mitigation measures such as forest restoration.
  • PublicationOpen Access
    ENSO and NAO affect long-term leaf litter dynamics and stoichiometry of Scots pine and European beech mixedwoods
    (Wiley, 2019) González de Andrés, Ester; Blanco Vaca, Juan Antonio; Imbert Rodríguez, Bosco; Guan, Biing T.; Lo, Yueh-Hsin; Castillo Martínez, Federico; Ciencias; Zientziak
    Litterfall dynamics (production, seasonality and nutrient composition) are key factors influencing nutrient cycling. Leaf litter characteristics are modified by species composition, site conditions and water availability. However, significant evidence on how large-scale, global circulation patterns affect ecophysiological processes at tree and ecosystem level remains scarce due to the difficulty in separating the combined influence of different factors on local climate and tree phenology. To fill this gap, we studied links between leaf litter dynamics with climate and other forest processes, such as tree-ring width (TRW) and intrinsic water-use efficiency (iWUE) in two mixtures of Scots pine (Pinus sylvestris L.) and European beech (Fagus sylvatica L.) in the south-western Pyrenees. Temporal series (18 years) of litterfall production and elemental chemical composition were decomposed following the ensemble empirical mode decomposition (EEMD) method and relationships with local climate, large-scale climatic indices, TRW and Scots pine´s iWUE were assessed. Temporal trends in N:P ratios indicated increasing P-limitation of soil microbes, thus affecting nutrient availability, as the ecological succession from a pine-dominated to a beech-dominated forest took place. A significant influence of large-scale patterns on tree-level ecophysiology was explained through the impact of the North Atlantic Oscillation (NAO) and El Niño – Southern Oscillation (ENSO) on water availability. Positive NAO and negative ENSO were related to dry conditions and, consequently, to early needle shedding and increased N:P ratio of both species. Autumn storm activity appears to be related to premature leaf abscission of European beech. Significant cascading effects from large-scale patterns on local weather influenced pine TRW and iWUE. These variables also responded to leaf stoichiometry fallen three years prior to tree-ring formation. Our results provide evidence of the cascading effect that variability in global climate circulation patterns can have on ecophysiological processes and stand dynamics in mixed forests.
  • PublicationOpen Access
    Coarse woody debris' invertebrate community is affected directly by canopy type and indirectly by thinning in mixed scots pine-European beech forests
    (MDPI, 2020) Herrera Álvarez, Ximena; Blanco Vaca, Juan Antonio; Imbert Rodríguez, Bosco; Álvarez, Willin; Rivadeneira Barba, Gabriela; Zientziak; Institute for Multidisciplinary Research in Applied Biology - IMAB; Ciencias
    Research Highlights: Thinning and tree species alter the forest floor microclimate by modifying canopy cover, radiation, wind, and humidity. Thus, forest management can directly influence the edaphic mesofauna responsible for decomposing coarse woody debris (CWD). Background and Objectives: This research was carried out in the Southwestern Pyrenees Mountains (Northern Spain) and aimed to determine the influence of forest thinning and canopy type (pure Pinus sylvestris L. or a mix of P. sylvestris and Fagus sylvatica L.) on CWD colonization by edaphic fauna. Materials and Methods: CWD samples were collected belonging to intermediate and advanced decomposition stages, approximately 10 cm long and 5 cm in diameter. Using a design of three thinning intensities (0%, 20%, and 40% of basal area removed), with three replications per treatment (nine plots in total), four samples were taken per plot (two per canopy type) to reach 36 samples in total. Meso- and macrofauna were extracted from CWD samples with Berlese-Tullgren funnels, and individuals were counted and identified. Results: 19 taxonomic groups were recorded, the most abundant being the mesofauna (mites and Collembola). Mixed canopy type had a significant positive influence on richness, whereas advanced decay class had a positive significant influence on total abundance and richness. In addition, there were non-significant decreasing trends in richness and abundance with increasing thinning intensity. However, interactions among thinning intensity, canopy type, and decay class significantly affected mesofauna. Furthermore, some taxonomic groups showed differential responses to canopy type. CWD water content was positively correlated with total invertebrate abundance and some taxonomic groups. Our results suggest that stand composition has the potential to directly affect invertebrate communities in CWD, whereas stand density influence is indirect and mostly realized through changes in CWD moisture. As mesofauna is related to CWD decomposition rates, these effects should be accounted for when planning forest management transition from pure to mixed forests.
  • PublicationOpen Access
    Gestión forestal sostenible de masas de pino silvestre en el Pirineo Navarro
    (Asociación Española de Ecología Terrestre, 2003) Castillo Martínez, Federico; Imbert Rodríguez, Bosco; Blanco Vaca, Juan Antonio; Traver, Carmen; Puertas, Fernando; Ciencias del Medio Natural; Natura Ingurunearen Zientziak
    La política forestal actual se caracteriza por un compromiso hacia una gestión ecológicamente sostenible de los ecosistemas forestales. Para poder realizarla es necesario conocer los factores que afectan al uso de los bosques, entre los cuales los hay de tipo social, económico, legal, técnico y ecológico. Los beneficios que producen los bosques podrían desaparecer si la estabilidad de las masas forestales es afectada por las actividades humanas. Asumiendo que la explotación de los bosques es necesaria para la economía regional, debemos asegurarnos que el uso de los bosques no ponga en peligro la existencia de éstos. La gestión sostenible de los ecosistemas forestales intenta así compaginar la explotación forestal con el mantenimiento de la biodiversidad y la función del ecosistema. Presentamos aquí algunos aspectos de ecología y gestión forestal en el marco de un proyecto de investigación realizado por la Universidad Pública de Navarra y el Gobierno de Navarra para estudiar la forma de mejorar la producción de madera en bosques de pino albar (Pinus sylvestris L.) y las consecuencias que su explotación pueda tener sobre aspectos tales como el ciclo de nutrientes y la biodiversidad.
  • PublicationOpen Access
    8ª Edición de la Escuela de verano de Ecología de Navarra: ecólogas/os por un día
    (Asociación Española de Ecología Terrestre, AEET, 2022) Imbert Rodríguez, Bosco; Blanco Vaca, Juan Antonio; Ciencias; Zientziak; Institute for Multidisciplinary Research in Applied Biology - IMAB
    Durante los pasados 23 y 24 de junio tuvo lugar la 8ª edición de la Escuela de Verano de Ecología de Navarra de la Universidad Pública de Navarra (UPNA) con el título ‘Ecólogas/os por un día’. En la jornada se impartieron cuatro ponencias por parte de los miembros del grupo de investigación de Ecología y Medio Ambiente de la Universidad Pública de Navarra, pero la mayor parte del tiempo se dedicó al trabajo de campo en el parque. En dicho trabajo de campo los asistentes pudieron trabajar tres temas diferentes: el estudio de las comunidades vegetales en pastos, el estudio de la estructura de una comunidad arbórea y la observación y estimación de censos de aves. Los trabajos incluyeron la demostración y familiarización de los estudiantes con las distintas técnicas y aparatos para medir variables ambientales como luz ambiental, temperatura del suelo, humedad del suelo, diámetro y altura de árboles, así como las técnicas para realizar inventarios florísticos o de fauna.
  • PublicationOpen Access
    Tree-to-tree competition in mixed European beech-Scots pine forests has different impacts on growth and water-use efficiency depending on site condition.
    (Wiley, 2018) González de Andrés, Ester; Camarero, Jesús Julio; Blanco Vaca, Juan Antonio; Imbert Rodríguez, Bosco; Lo, Yueh-Hsin; Sangüesa Barreda, G.; Castillo Martínez, Federico; Ciencias del Medio Natural; Natura Ingurunearen Zientziak
    Mixed conifer-hardwood forests can be more productive than pure forests and they are increasingly considered as ecosystems that could provide adaptation strategies in the face of global change. However, the combined effects of tree-to-tree competition, rising atmospheric CO2 concentrations and climate on such mixtures remain poorly characterized and understood.2. To fill this research gap, we reconstructed 34-year series (1980-2013) of growth (basal area increment, BAI) and intrinsic water-use efficiency (iWUE) of Scots pine (Pinus sylvestris L.)-European beech (Fagus sylvatica L.) mixed stands at two climati-cally contrasting sites located in the southwestern Pyrenees. We also gathered data on tree-to-tree competition and climate variables in order to test the hypotheses that (1) radial growth will be greater when exposed to inter- than to intraspecific competition, that is, when species complementarity occurs and (2) enhanced iWUE could be linked to improved stem radial growth.3. Growth of both species was reduced when intraspecific competition increased. Species complementarity was linked to improved growth of Scots pine at the continental site, while competition overrode any complementarity advantage at the drought-prone Mediterranean site. Beech growth did not show any significant response to pine admixture likely due to shade tolerance and the highly competitive nature of this species. Increasing interspecific competition drove recent iWUE changes, which increased in Scots pine but decreased in European beech. The iWUE enhancement did not involve any growth improvement in Scots pine. However, the positive BAIiWUE relationship found for beech suggests an enhanced beech growth in drought-prone sites due to improved water use.4. Synthesis. Complementarity may enhance growth in mixed forests. However, water scarcity can constrict light-related complementarity for shade intolerant species (Scots pine) in drought-prone sites. Basal area increment-intrinsic water-use efficiency relationships were negative for Scots pine and positive for European beech. These contrasting behaviours have got implications for coping with the expected increasing drought events in Scots pine-European beech mixtures located near ecological limit of the two species. Complementarity effects between tree species should be considered to avoid overestimating the degree of future carbon uptake by mixed conifer¿broadleaf forests.