Imbert Rodríguez, Bosco
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Imbert Rodríguez
First Name
Bosco
person.page.departamento
Ciencias
person.page.instituteName
IMAB. Research Institute for Multidisciplinary Applied Biology
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
7 results
Search Results
Now showing 1 - 7 of 7
Publication Open Access Drought-induced changes in wood density are not prevented by thinning in Scots pine stands(MDPI, 2018) Candel Pérez, David; Lo, Yueh-Hsin; Blanco Vaca, Juan Antonio; Chiu, Chih-Ming; Camarero, Jesús Julio; González de Andrés, Ester; Imbert Rodríguez, Bosco; Castillo Martínez, Federico; Ciencias del Medio Natural; Natura Ingurunearen ZientziakDensity is an important wood mechanical property and an indicator of xylem architecture and hydraulic conductivity. It can be influenced by forest management and climate. We studied the impact of thinning and climate variables on annual stem radial growth (ring width and ring density, and their earlywood and latewood components) in two contrasting Scots pine (Pinus sylvestris L.) stands in northern Spain (one continental, one Mediterranean). At each site, three thinning regimes (control or T0, removing 20% basal area or T20, and removing 30% or T30) were randomly applied to nine plots per site (three plots per treatment) in 1999. Thinning was repeated at the Mediterranean site in 2009 (increasing thinning intensity in T30 to 40%). Eight trees per plot were cored in spring 2014. Second thinning at the Mediterranean site and first thinning at the continental site generally caused significantly wider ring (RW), earlywood (EW) and latewood (LW) widths, although no differences between T20 and T30/40 were found, supporting in part the common observation that radial growth is enhanced following thinning as competition for water and nutrients is reduced. At the Mediterranean site, values of latewood density (LD) and maximum density (Dmax) relative to pre-thinning conditions were significantly lower in T0 than in T30. However, at the continental site, relative changes of ring density (RD) and LD were significantly higher in T0 than in T20 and T30. Climate significantly affected not only RWbut also RD, with significant RD drops during or right after unusually warm-dry years (e.g., 2003, 2011), which were characterized by LD reductions between 5.4 and 8.0%. Such RD decreases were quickly followed by recovery of pre-drought density values. These results indicate trees temporarily reduce LD as a way to enhance hydraulic conductivity during dry summers. However, climate effects on wood density were site-dependent. We also detected that the thinning effect was not intense enough to prevent drought-induced changes in wood density by altering water availability, but it could help to reduce wood properties fluctuations and therefore maintain more homogeneous wood mechanic features.Publication Open Access Constrained trait variation by water availability modulates radial growth in evergreen and deciduous mediterranean oaks(Elsevier, 2024) González de Andrés, Ester; Serra-Maluquer, Xavier; Gazol, Antonio; Olano, José Miguel; García Plazaola, José Ignacio; Fernández Marín, Beatriz; Imbert Rodríguez, Bosco; Coll, Lluís; Ameztegui, Aitor; Espelta, Josep Maria; Alla, Arben Q.; Camarero, Jesús Julio; Ciencias; Zientziak; Institute for Multidisciplinary Research in Applied Biology - IMABSpatial and temporal variation in functional traits allows trees to adjust to shifting environmental conditions such as water stress. However, the change of traits, both mean and variances, along water availability gradients and across growing seasons, as well as their covariation with tree performance, have been rarely assessed. We examined intraspecific trait variation in coexisting evergreen (Quercus ilex ssp. ilex and Q. ilex ssp. ballota) and deciduous (Quercus faginea and Quercus humilis) Mediterranean oaks along a wide water availability gradient in northeastern Spain during six years. We measured leaf area (LA), shoot twig mass (Sm), leaf mass per area (LMA) and the ratio of shoot twig to leaf biomass (Sm:Lm). We characterized tree performance through basal area increment (BAI) and drought resilience indices. Higher variation was found within individuals than between individuals across populations and years. Within species, we found trait adjustments toward more conservative water-use (low LA and Sm and high LMA) with increasing drier conditions. Intraspecific trait variation was constrained by water availability, particularly on the deciduous species. In Q. ilex, trait variance of LMA positively covaried with annual BAI, whereas variance of LA, Sm and Sm:Lm was positively related to resistance and resilience against the severe 2012 drought in deciduous oaks. Our results support a tradeoff between the ability to tolerate drought and the capacity to cope with unpredictable changes in the environment through increased intraspecific trait variation, which may have implications on tree performance in the face of increased extreme events.Publication Open Access Drought limits tree growth more than greenness and reproduction: insights from five case studies in Spain(KeAi Communications, 2025-08-01) Camarero, Jesús Julio; Rubio-Cuadrado, Álvaro; González de Andrés, Ester; Valeriano, Cristina; Pizarro, Manuel; Imbert Rodríguez, Bosco; Lo, Yueh-Hsin; Blanco Vaca, Juan Antonio; Ciencias; Zientziak; Institute for Multidisciplinary Research in Applied Biology - IMABDroughts impact forests by influencing various processes such as canopy greenness, tree growth, and reproduction, but most studies have only examined a few of these processes. More comprehensive assessments of forest responses to climate variability and water shortages are needed to improve forecasts of post-drought dynamics. Iberian forests are well-suited for evaluating these effects because they experience diverse climatic conditions and are dominated by various conifer and broadleaf species, many of which exhibit masting. We assessed how greenness, evaluated using the normalized difference vegetation index (NDVI), tree radial growth, and seed or cone production responded to drought in five tree species (three conifers: silver fir (Abies alba), Scots pine (Pinus sylvestris), and stone pine (Pinus pinea); two broadleaves: European beech (Fagus sylvatica) and holm oak (Quercus ilex) inhabiting sites with different aridity. We correlated these data with the standardized precipitation evapotranspiration index (SPEI) using the climate window analysis (climwin) package, which identifies the most relevant climate window. Drought constrained growth more than greenness and seed or cone production. Dry conditions led to high seed or cone production in species found in cool, moist sites (silver fir, beech, and Scots pine). We also found negative associations of cone production with summer SPEI in the drought-tolerant stone pine, which showed lagged growth−cone negative correlations. However, in the seasonally dry holm oak forests, severe droughts constrained both growth and acorn production, leading to a positive correlation between these variables. Drought impacts on greenness, growth, seed, and cone production depended on species phenology and site aridity. A negative correlation between growth and reproduction does not necessarily indicate trade-offs, as both may be influenced by similar climatic factors.Publication Open Access Long-term carbon sequestration in pine forests under different silvicultural and climatic regimes in Spain(MDPI, 2022) Navarro Cerrillo, Rafael M.; Ruiz Gómez, Francisco Javier; Camarero, Jesús Julio; Castillo, Víctor M.; Barberá, Gonzalo G.; Palacios Rodríguez, Guillermo; Navarro, Francisco B.; Blanco Vaca, Juan Antonio; Imbert Rodríguez, Bosco; Cachinero Vivar, Antonio M.; Molina, Antonio J.; Campo, Antonio D. del; Zientziak; Institute for Multidisciplinary Research in Applied Biology - IMAB; CienciasProactive silviculture treatments (e.g., thinning) may increase C sequestration contributing to climate change mitigation, although, there are still questions about this effect in Mediterranean pine forests. The aim of this research was to quantify the storage of biomass and soil organic carbon in Pinus forests along a climatic gradient from North to South of the Iberian Peninsula. Nine experimental Pinus spp trials were selected along a latitudinal gradient from the pre-Pyrenees to southern Spain. At each location, a homogeneous area was used as the operational scale, and three thinning intensity treatments: unthinned or control (C), intermediate thinning (LT, removal of 30–40% of the initial basal area) and heavy thinning (HT, removal of 50–60%) were conducted. Growth per unit area (e.g., expressed as basal area increment-BAI), biomass, and Soil Organic Carbon (SOC) were measured as well as three sets of environmental variables (climate, soil water availability and soil chemical and physical characteristics). One-way ANOVA and Structural Equation Modelling (SEM) were used to study the effect of thinning and environmental variables on C sequestration. Biomass and growth per unit area were higher in the control than in the thinning treatments, although differences were only significant for P. halepensis. Radial growth recovered after thinning in all species, but it was faster in the HT treatments. Soil organic carbon (SOC10, 0–10 cm depth) was higher in the HT treatments for P. halepensis and P. sylvestris, but not for P. nigra. SEM showed that Pinus stands of the studied species were beneficed by HT thinning, recovering their growth quickly. The resulting model explained 72% of the variation in SOC10 content, and 89% of the variation in silvicultural condition (basal area and density) after thinning. SOC10 was better related to climate than to silvicultural treatments. On the other hand, soil chemical and physical characteristics did not show significant influence over SOC10- Soil water availability was the latent variable with the highest influence over SOC10. This work is a new contribution that shows the need for forest managers to integrate silviculture and C sequestration in Mediterranean pine plantationsPublication Open Access SilvAdapt.Net: a site-based network of adaptive forest management related to climate change in Spain(MDPI, 2021) Molina, Antonio J.; Navarro Cerrillo, Rafael M.; Pérez-Romero, Javier; Alejano, Reyes; Bellot, Juan F.; Blanco Vaca, Juan Antonio; Camarero, Jesús Julio; Carrara, Arnaud; Castillo, Víctor M.; Cervera, Teresa; Barberá, Gonzalo G.; González-Sanchis, María; Hernández, Álvaro; Imbert Rodríguez, Bosco; Jiménez, María N.; Llorens, Pilar; Lucas Borja, Manuel Esteban; Moreno, Gerardo; Moreno de las Heras, Mariano; Navarro, Francisco B.; Palacios, Guillermo; Palero, Noemí; Ripoll, María A.; Regüés, D.; Ruiz Gómez, Francisco Javier; Vilagrosa, Alberto; Campo, Antonio D. del; Ciencias; ZientziakAdaptive forest management (AFM) is an urgent need because of the uncertainty regarding how changes in the climate will affect the structure, composition and function of forests during the next decades. Current research initiatives for the long-term monitoring of impacts of silviculture are scattered and not integrated into research networks, with the consequent losses of opportunities and capacity for action. To increase the scientific and practical impacts of these experiences, it is necessary to establish logical frameworks that harmonize the information and help us to define the most appropriate treatments. In this context, a number of research groups in Spain have produced research achievements and know-how during the last decades that can allow for the improvement in AFM. These groups address the issue of AFM from different fields, such as ecophysiology, ecohydrology and forest ecology, thus resulting in valuable but dispersed expertise. The main objective of this work is to introduce a comprehensive strategy aimed to study the implementation of AFM in Spain. As a first step, a network of 34 experimental sites managed by 14 different research groups is proposed and justified. As a second step, the most important AFM impacts on Mediterranean pines, as one of the most extended natural and planted forest types in Spain, are presented. Finally, open questions dealing with key aspects when attempting to implement an AFM framework are discussed. This study is expected to contribute to better outlining the procedures and steps needed to implement regional frameworks for AFM.Publication Open Access Temporal interactions among throughfall, type of canopy and thinning drive radial growth in an Iberian mixed pine-beech forest(Elsevier, 2018) Cardil Forradellas, Adrián; Imbert Rodríguez, Bosco; Camarero, Jesús Julio; Primicia Alvarez, Irantzu; Castillo Martínez, Federico; Ciencias del Medio Natural; Natura Ingurunearen ZientziakMany factors can influence tree growth over time such as different forest management practices, climate or tree-to-tree interactions, especially in mixed forests. We show in this work how the temporal growth patterns for Scots pine and European beech depend on thinning intensity (0%, 20% and 40% extraction of basal area), canopy type (pine-beech vs. pine patches), throughfall and their interactions. To fulfill this objective we monitored radial growth of both species using band dendrometers during a 6-year long period including two very dry years. Temporal growth patterns differed between both species. Whereas Scots pine showed two main peaks of growth in May-June and October, European beech mainly grew from May to early September even when throughfall was very limited. Effects of thinning on growth generally increased for both species during dry periods both at the seasonal and annual scales. The treatment with 20% of thinning intensity was the most effective at the annual scale for enhancing growth of both species. However, increases in growth due to thinning were much higher in beech than in pine and lasted longer. Thinning effects on pine were higher in mixed canopy than in pure canopy and appeared to be modulated by throughfall. Global differences in pine growth between canopy types as a function of throughfall increased during the main growing season as beech canopy developed. Growth of Scots pine, but not that of European beech, generally increased with throughfall which suggests that pine might be more dependent for its growth on water from the soil surface layer while beech would depend more on water from deeper soil layers. Our findings have implications to select the most convenient thinning treatments and canopy type under a potential climate change scenario characterized by warmer conditions, more severe droughts and less throughfall.Publication Open Access Tree-to-tree competition in mixed European beech-Scots pine forests has different impacts on growth and water-use efficiency depending on site condition.(Wiley, 2018) González de Andrés, Ester; Camarero, Jesús Julio; Blanco Vaca, Juan Antonio; Imbert Rodríguez, Bosco; Lo, Yueh-Hsin; Sangüesa Barreda, G.; Castillo Martínez, Federico; Ciencias del Medio Natural; Natura Ingurunearen ZientziakMixed conifer-hardwood forests can be more productive than pure forests and they are increasingly considered as ecosystems that could provide adaptation strategies in the face of global change. However, the combined effects of tree-to-tree competition, rising atmospheric CO2 concentrations and climate on such mixtures remain poorly characterized and understood.2. To fill this research gap, we reconstructed 34-year series (1980-2013) of growth (basal area increment, BAI) and intrinsic water-use efficiency (iWUE) of Scots pine (Pinus sylvestris L.)-European beech (Fagus sylvatica L.) mixed stands at two climati-cally contrasting sites located in the southwestern Pyrenees. We also gathered data on tree-to-tree competition and climate variables in order to test the hypotheses that (1) radial growth will be greater when exposed to inter- than to intraspecific competition, that is, when species complementarity occurs and (2) enhanced iWUE could be linked to improved stem radial growth.3. Growth of both species was reduced when intraspecific competition increased. Species complementarity was linked to improved growth of Scots pine at the continental site, while competition overrode any complementarity advantage at the drought-prone Mediterranean site. Beech growth did not show any significant response to pine admixture likely due to shade tolerance and the highly competitive nature of this species. Increasing interspecific competition drove recent iWUE changes, which increased in Scots pine but decreased in European beech. The iWUE enhancement did not involve any growth improvement in Scots pine. However, the positive BAIiWUE relationship found for beech suggests an enhanced beech growth in drought-prone sites due to improved water use.4. Synthesis. Complementarity may enhance growth in mixed forests. However, water scarcity can constrict light-related complementarity for shade intolerant species (Scots pine) in drought-prone sites. Basal area increment-intrinsic water-use efficiency relationships were negative for Scots pine and positive for European beech. These contrasting behaviours have got implications for coping with the expected increasing drought events in Scots pine-European beech mixtures located near ecological limit of the two species. Complementarity effects between tree species should be considered to avoid overestimating the degree of future carbon uptake by mixed conifer¿broadleaf forests.