Imbert Rodríguez, Bosco

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Imbert Rodríguez

First Name

Bosco

person.page.departamento

Ciencias

person.page.instituteName

IMAB. Research Institute for Multidisciplinary Applied Biology

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 2 of 2
  • PublicationOpen Access
    Long-term carbon sequestration in pine forests under different silvicultural and climatic regimes in Spain
    (MDPI, 2022) Navarro Cerrillo, Rafael M.; Ruiz Gómez, Francisco Javier; Camarero, Jesús Julio; Castillo, Víctor M.; Barberá, Gonzalo G.; Palacios Rodríguez, Guillermo; Navarro, Francisco B.; Blanco Vaca, Juan Antonio; Imbert Rodríguez, Bosco; Cachinero Vivar, Antonio M.; Molina, Antonio J.; Campo, Antonio D. del; Zientziak; Institute for Multidisciplinary Research in Applied Biology - IMAB; Ciencias
    Proactive silviculture treatments (e.g., thinning) may increase C sequestration contributing to climate change mitigation, although, there are still questions about this effect in Mediterranean pine forests. The aim of this research was to quantify the storage of biomass and soil organic carbon in Pinus forests along a climatic gradient from North to South of the Iberian Peninsula. Nine experimental Pinus spp trials were selected along a latitudinal gradient from the pre-Pyrenees to southern Spain. At each location, a homogeneous area was used as the operational scale, and three thinning intensity treatments: unthinned or control (C), intermediate thinning (LT, removal of 30–40% of the initial basal area) and heavy thinning (HT, removal of 50–60%) were conducted. Growth per unit area (e.g., expressed as basal area increment-BAI), biomass, and Soil Organic Carbon (SOC) were measured as well as three sets of environmental variables (climate, soil water availability and soil chemical and physical characteristics). One-way ANOVA and Structural Equation Modelling (SEM) were used to study the effect of thinning and environmental variables on C sequestration. Biomass and growth per unit area were higher in the control than in the thinning treatments, although differences were only significant for P. halepensis. Radial growth recovered after thinning in all species, but it was faster in the HT treatments. Soil organic carbon (SOC10, 0–10 cm depth) was higher in the HT treatments for P. halepensis and P. sylvestris, but not for P. nigra. SEM showed that Pinus stands of the studied species were beneficed by HT thinning, recovering their growth quickly. The resulting model explained 72% of the variation in SOC10 content, and 89% of the variation in silvicultural condition (basal area and density) after thinning. SOC10 was better related to climate than to silvicultural treatments. On the other hand, soil chemical and physical characteristics did not show significant influence over SOC10- Soil water availability was the latent variable with the highest influence over SOC10. This work is a new contribution that shows the need for forest managers to integrate silviculture and C sequestration in Mediterranean pine plantations
  • PublicationOpen Access
    SilvAdapt.Net: a site-based network of adaptive forest management related to climate change in Spain
    (MDPI, 2021) Molina, Antonio J.; Navarro Cerrillo, Rafael M.; Pérez-Romero, Javier; Alejano, Reyes; Bellot, Juan F.; Blanco Vaca, Juan Antonio; Camarero, Jesús Julio; Carrara, Arnaud; Castillo, Víctor M.; Cervera, Teresa; Barberá, Gonzalo G.; González-Sanchis, María; Hernández, Álvaro; Imbert Rodríguez, Bosco; Jiménez, María N.; Llorens, Pilar; Lucas Borja, Manuel Esteban; Moreno, Gerardo; Moreno de las Heras, Mariano; Navarro, Francisco B.; Palacios, Guillermo; Palero, Noemí; Ripoll, María A.; Regüés, D.; Ruiz Gómez, Francisco Javier; Vilagrosa, Alberto; Campo, Antonio D. del; Ciencias; Zientziak
    Adaptive forest management (AFM) is an urgent need because of the uncertainty regarding how changes in the climate will affect the structure, composition and function of forests during the next decades. Current research initiatives for the long-term monitoring of impacts of silviculture are scattered and not integrated into research networks, with the consequent losses of opportunities and capacity for action. To increase the scientific and practical impacts of these experiences, it is necessary to establish logical frameworks that harmonize the information and help us to define the most appropriate treatments. In this context, a number of research groups in Spain have produced research achievements and know-how during the last decades that can allow for the improvement in AFM. These groups address the issue of AFM from different fields, such as ecophysiology, ecohydrology and forest ecology, thus resulting in valuable but dispersed expertise. The main objective of this work is to introduce a comprehensive strategy aimed to study the implementation of AFM in Spain. As a first step, a network of 34 experimental sites managed by 14 different research groups is proposed and justified. As a second step, the most important AFM impacts on Mediterranean pines, as one of the most extended natural and planted forest types in Spain, are presented. Finally, open questions dealing with key aspects when attempting to implement an AFM framework are discussed. This study is expected to contribute to better outlining the procedures and steps needed to implement regional frameworks for AFM.