Imbert Rodríguez, Bosco
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Imbert Rodríguez
First Name
Bosco
person.page.departamento
Ciencias
person.page.instituteName
IMAB. Research Institute for Multidisciplinary Applied Biology
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
31 results
Search Results
Now showing 1 - 10 of 31
Publication Open Access El ecólogo en su laberinto(Asociación Española de Ecología Terrestre, 2008) García-Fayos, P.; Bonet, F.J.; Valladares, Fernando; Traveset Vilagines, Anna; Pausas, J.G.; Imbert Rodríguez, Bosco; Lloret, F; Ciencias del Medio Natural; Natura Ingurunearen ZientziakEl presente artículo pretende ser una contribución al debate sobre el papel de los ecólogos en la sociedad. El mismo es producto de la reflexión a partir de discusiones mantenidas a finales de junio de 2007 en Farrera y enero de 2008 en Barcelona, bajo el auspicio de GLOBIMED, una red que reúne a casi 30 científicos españoles del campo de la ecología de los sistemas terrestres (http://www.globimed.net/).Publication Open Access Land use change effects on carbon and nitrogen stocks in the Pyrenees during the last 150 years: a modelling approach(Elsevier, 2015) Lo, Yueh-Hsin; Blanco Vaca, Juan Antonio; Canals Tresserras, Rosa María; González de Andrés, Ester; San Emeterio Garciandía, Leticia; Imbert Rodríguez, Bosco; Castillo Martínez, Federico; Ciencias del Medio Natural; Natura Ingurunearen ZientziakIn the southern Pyrenees, human population and therefore land uses have changed from forests to pastures, then crops, and back to pastures and secondary forests during the last two centuries. To understand what such rapid land use changes have meant for carbon (C) and nitrogen (N) stocks, we used data from two forest sites in the western Pyrenees, combined with regional data on pastures and crop production (potato, cereal), to calibrate the ecosystem-level model FORECAST. Then, we simulated 150-year of land use for each site, emulating historical changes. Our estimates show that the conversion from forests into pastures and crops created C and N deficits (378-427 Mg C ha-1, 4.0-4.6 Mg N ha-1) from which these sites are still recovering. The main ecological process behind the creation of these deficits was the loss of the ecological legacy of soil organic matter (SOM) created by the forest, particularly during conversion to farming. Pastures were able to reverse, stop or at least slow down the loss of such legacy. In conclusion, our work shows the deep impact of historical land use in ecosystem attributes, both in magnitude of removed C and N stocks and in duration of such impact. Also, the usefulness of ecological modelling in absence of historical data to estimate such changes is showcased, providing a framework for potential C and N stocks to be reached by climate change mitigation measures such as forest restoration.Publication Open Access CO2 fertilization plays a minor role in long-term carbon accumulation patterns in temperate pine forests in the southwestern Pyrenees(Elsevier, 2019) Lo, Yueh-Hsin; Blanco Vaca, Juan Antonio; González de Andrés, Ester; Imbert Rodríguez, Bosco; Castillo Martínez, Federico; Institute for Multidisciplinary Research in Applied Biology - IMABIsolating the long-term fertilization effect of CO 2 from other climate- and site-related effects on tree growth has been proven a challenging task. To isolate long-term effects of [CO2] on water use efficiency at ecosystem level, we used the FORECAST Climate forest model, calibrated for Scots pine (Pinus sylvestris L.) forests in the southwestern Pyrenees, growing at a Mediterranean montane site and at a continental subalpine site. Future climate scenarios (RCP 4.5 and RCP 8.5) were generated using a battery of six climate models to estimate daily values of temperature and precipitation in a 90-year series. A factorial experiment was designed to disentangle the importance on C pools of three growing limiting factors (nitrogen limitation, climate (temperature + precipitation) limitation and atmospheric CO 2 concentration). The relative importance of each factor was quantified by comparing the scenario with the limitation of each individual factor turned on with the non-limitation scenario. Positive CO 2 fertilization due to improvement in water use efficiency was detected by the model, but its quantitative impact improving tree growth was minimum: its average increase in ecosystem C pools ranged from 0.3 to 0.9%. At the site with cooler climate conditions (continental), the main limitation for tree growth was climate. Such limitation will be reduced under climate change and the ecosystem will store more carbon. At the site with milder climate conditions (Mediterranean), N availability was the main limiting factor albeit modulated by water availability. Such limitation could be reduced under climate change as N cycling could accelerate (higher litterfall production and decomposition rates) but also increase if droughts become more frequent and severe. In addition, the magnitude of the uncertainty related to climate model selection was much more important than CO 2 fertilization, indicating that atmospheric processes are more important than tree physiological processes when defining how much carbon could be gained (or lost) in forests under climate change. In conclusion, due to the small changes in forest C pools caused by variation of atmospheric CO 2 concentrations compared to changes caused by other growth limiting factors (nutrients, climate), reducing uncertainty related to climate projections seems a more efficient way to reduce uncertainty in tree growth projections than increasing forest model complexity.Publication Open Access Constrained trait variation by water availability modulates radial growth in evergreen and deciduous mediterranean oaks(Elsevier, 2024) González de Andrés, Ester; Serra-Maluquer, Xavier; Gazol, Antonio; Olano, José Miguel; García Plazaola, José Ignacio; Fernández Marín, Beatriz; Imbert Rodríguez, Bosco; Coll, Lluís; Ameztegui, Aitor; Espelta, Josep Maria; Alla, Arben Q.; Camarero, Jesús Julio; Ciencias; Zientziak; Institute for Multidisciplinary Research in Applied Biology - IMABSpatial and temporal variation in functional traits allows trees to adjust to shifting environmental conditions such as water stress. However, the change of traits, both mean and variances, along water availability gradients and across growing seasons, as well as their covariation with tree performance, have been rarely assessed. We examined intraspecific trait variation in coexisting evergreen (Quercus ilex ssp. ilex and Q. ilex ssp. ballota) and deciduous (Quercus faginea and Quercus humilis) Mediterranean oaks along a wide water availability gradient in northeastern Spain during six years. We measured leaf area (LA), shoot twig mass (Sm), leaf mass per area (LMA) and the ratio of shoot twig to leaf biomass (Sm:Lm). We characterized tree performance through basal area increment (BAI) and drought resilience indices. Higher variation was found within individuals than between individuals across populations and years. Within species, we found trait adjustments toward more conservative water-use (low LA and Sm and high LMA) with increasing drier conditions. Intraspecific trait variation was constrained by water availability, particularly on the deciduous species. In Q. ilex, trait variance of LMA positively covaried with annual BAI, whereas variance of LA, Sm and Sm:Lm was positively related to resistance and resilience against the severe 2012 drought in deciduous oaks. Our results support a tradeoff between the ability to tolerate drought and the capacity to cope with unpredictable changes in the environment through increased intraspecific trait variation, which may have implications on tree performance in the face of increased extreme events.Publication Open Access SilvAdapt.Net: a site-based network of adaptive forest management related to climate change in Spain(MDPI, 2021) Molina, Antonio J.; Navarro Cerrillo, Rafael M.; Pérez-Romero, Javier; Alejano, Reyes; Bellot, Juan F.; Blanco Vaca, Juan Antonio; Camarero, Jesús Julio; Carrara, Arnaud; Castillo, Víctor M.; Cervera, Teresa; Barberá, Gonzalo G.; González-Sanchis, María; Hernández, Álvaro; Imbert Rodríguez, Bosco; Jiménez, María N.; Llorens, Pilar; Lucas Borja, Manuel Esteban; Moreno, Gerardo; Moreno de las Heras, Mariano; Navarro, Francisco B.; Palacios, Guillermo; Palero, Noemí; Ripoll, María A.; Regüés, D.; Ruiz Gómez, Francisco Javier; Vilagrosa, Alberto; Campo, Antonio D. del; Ciencias; ZientziakAdaptive forest management (AFM) is an urgent need because of the uncertainty regarding how changes in the climate will affect the structure, composition and function of forests during the next decades. Current research initiatives for the long-term monitoring of impacts of silviculture are scattered and not integrated into research networks, with the consequent losses of opportunities and capacity for action. To increase the scientific and practical impacts of these experiences, it is necessary to establish logical frameworks that harmonize the information and help us to define the most appropriate treatments. In this context, a number of research groups in Spain have produced research achievements and know-how during the last decades that can allow for the improvement in AFM. These groups address the issue of AFM from different fields, such as ecophysiology, ecohydrology and forest ecology, thus resulting in valuable but dispersed expertise. The main objective of this work is to introduce a comprehensive strategy aimed to study the implementation of AFM in Spain. As a first step, a network of 34 experimental sites managed by 14 different research groups is proposed and justified. As a second step, the most important AFM impacts on Mediterranean pines, as one of the most extended natural and planted forest types in Spain, are presented. Finally, open questions dealing with key aspects when attempting to implement an AFM framework are discussed. This study is expected to contribute to better outlining the procedures and steps needed to implement regional frameworks for AFM.Publication Open Access Long-term carbon sequestration in pine forests under different silvicultural and climatic regimes in Spain(MDPI, 2022) Navarro Cerrillo, Rafael M.; Ruiz Gómez, Francisco Javier; Camarero, Jesús Julio; Castillo, Víctor M.; Barberá, Gonzalo G.; Palacios Rodríguez, Guillermo; Navarro, Francisco B.; Blanco Vaca, Juan Antonio; Imbert Rodríguez, Bosco; Cachinero Vivar, Antonio M.; Molina, Antonio J.; Campo, Antonio D. del; Zientziak; Institute for Multidisciplinary Research in Applied Biology - IMAB; CienciasProactive silviculture treatments (e.g., thinning) may increase C sequestration contributing to climate change mitigation, although, there are still questions about this effect in Mediterranean pine forests. The aim of this research was to quantify the storage of biomass and soil organic carbon in Pinus forests along a climatic gradient from North to South of the Iberian Peninsula. Nine experimental Pinus spp trials were selected along a latitudinal gradient from the pre-Pyrenees to southern Spain. At each location, a homogeneous area was used as the operational scale, and three thinning intensity treatments: unthinned or control (C), intermediate thinning (LT, removal of 30–40% of the initial basal area) and heavy thinning (HT, removal of 50–60%) were conducted. Growth per unit area (e.g., expressed as basal area increment-BAI), biomass, and Soil Organic Carbon (SOC) were measured as well as three sets of environmental variables (climate, soil water availability and soil chemical and physical characteristics). One-way ANOVA and Structural Equation Modelling (SEM) were used to study the effect of thinning and environmental variables on C sequestration. Biomass and growth per unit area were higher in the control than in the thinning treatments, although differences were only significant for P. halepensis. Radial growth recovered after thinning in all species, but it was faster in the HT treatments. Soil organic carbon (SOC10, 0–10 cm depth) was higher in the HT treatments for P. halepensis and P. sylvestris, but not for P. nigra. SEM showed that Pinus stands of the studied species were beneficed by HT thinning, recovering their growth quickly. The resulting model explained 72% of the variation in SOC10 content, and 89% of the variation in silvicultural condition (basal area and density) after thinning. SOC10 was better related to climate than to silvicultural treatments. On the other hand, soil chemical and physical characteristics did not show significant influence over SOC10- Soil water availability was the latent variable with the highest influence over SOC10. This work is a new contribution that shows the need for forest managers to integrate silviculture and C sequestration in Mediterranean pine plantationsPublication Open Access Invertebrate community of Scots pine coarse woody debris in the Southwestern Pyrenees under different thinning intensities and tree species(MDPI, 2021) Herrera Álvarez, Ximena; Blanco Vaca, Juan Antonio; Imbert Rodríguez, Bosco; Álvarez, Willin; Rivadeneira Barba, Gabriela; Zientziak; Institute for Multidisciplinary Research in Applied Biology - IMAB; CienciasBackground and Objectives: The forest in the Southwestern Pyrenees Mountains (Northern Spain) is mainly composed of pure Pinus sylvestris L. or a mix of P. sylvestris and Fagus sylvatica L. The most common forest management technique to harvest pine is the application of forest thinning with different intensities. It promotes a change in the forest composition and structure. Taking into consideration this region as a site specific research about this topic, we aimed to understand the CWD invertebrate composition response to different thinning intensities and canopy type of these tree species. Materials and Methods: CWD samples were collected belonging to intermediate and advanced decay classes, approximately 10 cm long and 5 cm in diameter. Using a design of three thinning intensities (0%, 20%, and 40% of basal area removed), with three replications per treatment (nine plots in total), four samples were taken per plot (two per canopy type) to reach 36 samples in total. Meso- and macrofauna were extracted from CWD samples with Berlese– Tullgren funnels, and individuals were counted and identified. Results: Most of the taxonomic groups belonged to mesofauna, mainly to Acari and Collembola orders. On the other hand, the macrofauna represented a minimum percentage of the community composition. Our results indicated that although thinning intensities did not significantly affect the invertebrate community, canopy type and CWD water content influenced significantly. It is imperative to consider in forest management the responses of canopy type and thinning intensities in CWD water content, this disturbance could also slow down the organic matter decomposition process in the soil, thus affecting in the long term the natural cycle of nutrients.Publication Open Access Simulando la interacción entre la densidad inicial y los flujos de agua y nutrientes para comprender el desarrollo de rodales mixtos de Pinus sylvestris y Fagus sylvatica bajo cambio climático(Asociación Española de Ecología Terrestre, 2017) Candel Pérez, David; Blanco Vaca, Juan Antonio; González de Andrés, Ester; Lo, Yueh-Hsin; Imbert Rodríguez, Bosco; Castillo Martínez, Federico; Ciencias del Medio Natural; Natura Ingurunearen ZientziakLa gestión de bosques mixtos se ha convertido en una estrategia de adaptación para reducir los riesgos relacionados con el cambio climático. A su vez, los modelos ecológicos pueden ser una herramienta útil para el estudio del crecimiento y la productividad de dichas masas. En este trabajo se presenta una evaluación de la capacidad del modelo híbrido “FORECAST Climate” de simular el estrés hídrico y la productividad en bosques mixtos de pino silvestre y haya en Navarra (norte de España) y su interacción con distintos niveles de densidad de regenerado. En el estudio se incluyeron tres escenarios climáticos para comprobar la capacidad del modelo para simular los flujos de agua bajo condiciones de cambio climático. Las estimaciones del modelo tanto de estrés hídrico como de acumulación de biomasa se mostraron sensibles a la reducción en la densidad de regeneración inicial. Los resultados indicaron que el modelo muestra la suficiente capacidad para simular los efectos de la competencia entre especies en la mortalidad de árboles en bosques mixtos y estimar variables relacionadas con los flujos hídricos. Por un lado, los efectos más significativos de la densidad del rodal sobre la disponibilidad hídrica aparecen durante la primera etapa de desarrollo, mientras que, por otro, el estrés hídrico es mayor en el caso del haya, aunque la reducción de la competencia podría compensar dicho aumento. Las implicaciones de este trabajo para la gestión adaptativa de bosques mixtos sugieren el actual control de la densidad para que los efectos acumulativos sean significativos en próximas décadas.Publication Open Access Drought-induced changes in wood density are not prevented by thinning in Scots pine stands(MDPI, 2018) Candel Pérez, David; Lo, Yueh-Hsin; Blanco Vaca, Juan Antonio; Chiu, Chih-Ming; Camarero, Jesús Julio; González de Andrés, Ester; Imbert Rodríguez, Bosco; Castillo Martínez, Federico; Ciencias del Medio Natural; Natura Ingurunearen ZientziakDensity is an important wood mechanical property and an indicator of xylem architecture and hydraulic conductivity. It can be influenced by forest management and climate. We studied the impact of thinning and climate variables on annual stem radial growth (ring width and ring density, and their earlywood and latewood components) in two contrasting Scots pine (Pinus sylvestris L.) stands in northern Spain (one continental, one Mediterranean). At each site, three thinning regimes (control or T0, removing 20% basal area or T20, and removing 30% or T30) were randomly applied to nine plots per site (three plots per treatment) in 1999. Thinning was repeated at the Mediterranean site in 2009 (increasing thinning intensity in T30 to 40%). Eight trees per plot were cored in spring 2014. Second thinning at the Mediterranean site and first thinning at the continental site generally caused significantly wider ring (RW), earlywood (EW) and latewood (LW) widths, although no differences between T20 and T30/40 were found, supporting in part the common observation that radial growth is enhanced following thinning as competition for water and nutrients is reduced. At the Mediterranean site, values of latewood density (LD) and maximum density (Dmax) relative to pre-thinning conditions were significantly lower in T0 than in T30. However, at the continental site, relative changes of ring density (RD) and LD were significantly higher in T0 than in T20 and T30. Climate significantly affected not only RWbut also RD, with significant RD drops during or right after unusually warm-dry years (e.g., 2003, 2011), which were characterized by LD reductions between 5.4 and 8.0%. Such RD decreases were quickly followed by recovery of pre-drought density values. These results indicate trees temporarily reduce LD as a way to enhance hydraulic conductivity during dry summers. However, climate effects on wood density were site-dependent. We also detected that the thinning effect was not intense enough to prevent drought-induced changes in wood density by altering water availability, but it could help to reduce wood properties fluctuations and therefore maintain more homogeneous wood mechanic features.Publication Open Access Pinus sylvestris L. and Fagus sylvatica L. effects on soil and root properties and their interactions in a mixed forest on the Southwestern Pyrenees(Elsevier, 2021) Yeste Yeste, Antonio; Blanco Vaca, Juan Antonio; Imbert Rodríguez, Bosco; Zozaya Vela, Helena; Elizalde Arbilla, Martín; Zientziak; Institute for Multidisciplinary Research in Applied Biology - IMAB; CienciasTree species alter soil properties, potentially modifying forest nutrients cycling. In the current management context in which mixed species forests are favoured over monocultures due to their biodiversity and productivity-related advantages, the assessment of species effects on soils, as well as their interactions with other species, gains increasing relevance. In this study, the effects of Scots pine (Pinus sylvestris L.) and European beech (Fagus sylvatica L.) on soil properties were evaluated. Fine roots were paid special attention, measuring their biomass, functional traits (specific root length, root tissue density) and vertical distribution in order to discern the direction of these species interaction, either complementary or competitive. The research was carried out in the Southwestern Pyrenees (northern Spain), in an originally Scots pine stand transformed nowadays into a mixed forest by European beech natural regeneration. Soil and root samples were taken close to pine trees surrounded by other pines in areas that remain similar to pine monospecific stands, and close to pine and beech trees surrounded by both species in mixed areas. A lower C/N ratio was found in the soil close to beech stems. This suggests better quality in mixed litter in comparison to pine litter, leading to higher decomposition rates. Higher fine root biomass was found in the mixed areas mainly due to beech fine roots great abundance, which correlated positively with microbial biomass. Fine roots functional traits such as specific root length and diameter did not vary depending on their proximity to different tree species, though Scots pine fine root biomass decreased sharply when close to beech trees. This reduction, together with the already more abundant fine root biomass of beech, with higher specific root length and root tissue density than pine, lead to a competitive interaction in which European beech tends to dominate the soil at all depths. In this case, no complementarity effect at belowground level, strong enough to allow Scots pines to cope with beech soil colonization, was found under natural conditions.