Reina Arias, Ramsés
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Reina Arias
First Name
Ramsés
person.page.departamento
Instituto de Agrobiotecnología (IdAB)
person.page.instituteName
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
16 results
Search Results
Now showing 1 - 10 of 16
Publication Open Access Expression analysis of lung miRNAs responding to ovine VM virus infection by RNA-seq(BioMed Central, 2019) Bilbao Arribas, Martin; Abendaño, Naiara; Varela Martínez, Endika; Reina Arias, Ramsés; Andrés Cara, Damián de; Jugo, Begoña M.; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako InstitutuaBackground: MicroRNAs (miRNAs) are short endogenous, single-stranded, noncoding small RNA molecules of approximately 22 nucleotides in length. They regulate gene expression posttranscriptionally by silencing mRNA expression, thus orchestrating many physiological processes. The Small Ruminant Lentiviruses (SRLV) group includes the Visna Maedi Virus (VMV) and Caprine Arthritis Encephalitis (CAEV) viruses, which cause a disease in sheep and goats characterized by pneumonia, mastitis, arthritis and encephalitis. Their main target cells are from the monocyte/macrophage lineage. To date, there are no studies on the role of miRNAs in this viral disease. Results: Using RNA-seq technology and bioinformatics analysis, the expression levels of miRNAs during different clinical stages of infection were studied. A total of 212 miRNAs were identified, of which 46 were conserved sequences in other species but found for the first time in sheep, and 12 were completely novel. Differential expression analysis comparing the uninfected and seropositive groups showed changes in several miRNAs; however, no significant differences were detected between seropositive asymptomatic and diseased sheep. The robust increase in the expression level of oar-miR-21 is consistent with its increased expression in other viral diseases. Furthermore, the target prediction of the dysregulated miRNAs revealed that they control genes involved in proliferation-related signalling pathways, such as the PI3K-Akt, AMPK and ErbB pathways. Conclusions: To the best of our knowledge, this is the first study reporting miRNA profiling in sheep in response to SRLV infection. The known functions of oar-miR-21 as a regulator of inflammation and proliferation appear to be a possible cause of the lesions caused in the sheep's lungs. This miRNA could be an indicator for the severity of the lung lesions, or a putative target for therapeutic intervention.Publication Open Access Immunization against small ruminant lentiviruses(MDPI, 2013) Reina Arias, Ramsés; Andrés Cara, Damián de; Amorena Zabalza, Beatriz; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua; Gobierno de Navarra / Nafarroako Gobernua: IIQ14064.RI1Multisystemic disease caused by Small Ruminant Lentiviruses (SRLV) in sheep and goats leads to production losses, to the detriment of animal health and welfare. This, together with the lack of treatments, has triggered interest in exploring different strategies of immunization to control the widely spread SRLV infection and, also, to provide a useful model for HIV vaccines. These strategies involve inactivated whole virus, subunit vaccines, DNA encoding viral proteins in the presence or absence of plasmids encoding immunological adjuvants and naturally or artificially attenuated viruses. In this review, we revisit, comprehensively, the immunization strategies against SRLV and analyze this double edged tool individually, as it may contribute to either controlling or enhancing virus replication and/or disease.Publication Open Access Diagnosing infection with small ruminant lentiviruses of genotypes A and B by combining synthetic peptides in ELISA(Elsevier, 2015) Sanjosé, Leticia; Crespo Otano, Helena; Glaría Ezquer, Idoia; Andrés Cara, Damián de; Reina Arias, Ramsés; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua; Gobierno de Navarra / Nafarroako Gobernua; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaThe major challenges in diagnosing small ruminant lentivirus (SRLV) infection include early detection and genotyping of strains of epidemiological interest. A longitudinal study was carried out in Rasa Aragonesa sheep experimentally infected with viral strains of genotypes A or B from Spanish neurological and arthritic SRLV outbreaks, respectively. Sera were tested with two commercial ELISAs, three based on specific peptides and a novel combined peptide ELISA. Three different PCR assays were used to further assess infection status. The kinetics of anti-viral antibody responses were variable, with early diagnosis dependent on the type of ELISA used. Peptide epitopes of SRLV genotypes A and B combined in the same ELISA well enhanced the overall detection rate, whereas single peptides were useful for genotyping the infecting strain (A vs. B). The results of the study suggest that a combined peptide ELISA can be used for serological diagnosis of SRLV infection, with single peptide ELISAs useful for subsequent serotyping.Publication Open Access Detection of PrPSc in lung and mammary gland is favored by the presence of Visna/maedi virus lesions in naturally coinfected sheep(EDP Sciences, 2010) Salazar, Eider; Monleón, Eva; Bolea, Rosa; Acín, Cristina; Pérez, Marta María; Álvarez, Neila; Leginagoikoa, Iratxe; Juste, Ramón; Minguijón, Esmeralda; Reina Arias, Ramsés; Glaría Ezquer, Idoia; Berriatua, Eduardo; Andrés Cara, Damián de; Badiola, Juan José; Amorena Zabalza, Beatriz; Luján, Lluís; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako InstitutuaThere are few reports on the pathogenesis of scrapie (Sc) and Visna/maedi virus (VMV) coinfections. The aim of this work was to study in vivo as well as post mortem both diseases in 91 sheep. Diagnosis of Sc and VMV infections allowed the distribution of animals into five groups according to the presence (+) or absence ( ) of infection by Sc and VMV: Sc /VMV , Sc /VMV+, Sc+/VMV and Sc+/ VMV+. The latter was divided into two subgroups, with and without VMV-induced lymphoid follicle hyperplasia (LFH), respectively. In both the lung and mammary gland, PrPSc deposits were found in the germinal center of hyperplasic lymphoid follicles in the subgroup of Sc+/VMV+ having VMV-induced LFH. This detection was always associated with (and likely preceded by) PrPSc observation in the corresponding lymph nodes. No PrPSc was found in other VMV-associated lesions. Animals suffering from scrapie had a statistically significantly lower mean age than the scrapie free animals at the time of death, with no apparent VMV influence. ARQ/ARQ genotype was the most abundant among the 91 ewes and the most frequent in scrapie-affected sheep. VMV infection does not seem to influence the scrapie risk group distribution among animals from the five groups established in this work. Altogether, these data indicate that certain VMVinduced lesions can favor PrPSc deposits in Sc non-target organs such as the lung and the mammary gland, making this coinfection an interesting field that warrants further research for a better comprehension of the pathogenesis of both diseases.Publication Open Access Small ruminant lentiviruses: genetic variability, tropism and diagnosis(MDPI, 2013) Ramírez Álvarez, Hugo; Reina Arias, Ramsés; Amorena Zabalza, Beatriz; Andrés Cara, Damián de; Martínez, Humberto A.; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako InstitutuaSmall ruminant lentiviruses (SRLV) cause a multisystemic chronic disease affecting animal production and welfare. SRLV infections are spread across the world with the exception of Iceland. Success in controlling SRLV spread depends largely on the use of appropriate diagnostic tools, but the existence of a high genetic/antigenic variability among these viruses, the fluctuant levels of antibody against them and the low viral loads found in infected individuals hamper the diagnostic efficacy. SRLV have a marked in vivo tropism towards the monocyte/macrophage lineage and attempts have been made to identify the genome regions involved in tropism, with two main candidates, the LTR and env gene, since LTR contains primer binding sites for viral replication and the env-encoded protein (SU ENV), which mediates the binding of the virus to the host’s cell and has hypervariable regions to escape the humoral immune response. Once inside the host cell, innate immunity may interfere with SRLV replication, but the virus develops counteraction mechanisms to escape, multiply and survive, creating a quasi-species and undergoing compartmentalization events. So far, the mechanisms of organ tropism involved in the development of different disease forms (neurological, arthritic, pulmonary and mammary) are unknown, but different alternatives are proposed. This is an overview of the current state of knowledge on SRLV genetic variability and its implications in tropism as well as in the development of alternative diagnostic assays.Publication Open Access Ovine TRIM5α can restrict visna/maedi virus(American Society for Microbiology, 2012) Jauregui, Paula; Crespo Otano, Helena; Glaría Ezquer, Idoia; Luján, Lluís; Contreras, A.; Rosati, Sergio; Andrés Cara, Damián de; Amorena Zabalza, Beatriz; Towers, G. J.; Reina Arias, Ramsés; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua; Gobierno de Navarra / Nafarroako Gobernua, IIQ14064.RI1The restrictive properties of tripartite motif-containing 5 alpha (TRIM5α) from small ruminant species have not been explored. Here, we identify highly similar TRIM5α sequences in sheep and goats. Cells transduced with ovine TRIM5α effectively restricted the lentivirus visna/maedi virus DNA synthesis. Proteasome inhibition in cells transduced with ovine TRIM5α restored restricted viral DNA synthesis, suggesting a conserved mechanism of restriction. Identification of TRIM5α active molecular species may open new prophylactic strategies against lentiviral infections.Publication Open Access Post-entry blockade of small ruminant lentiviruses by wild ruminants(BioMed Central, 2016) Sanjosé, Leticia; Crespo Otano, Helena; Blatti-Cardinaux, Laure; Glaría Ezquer, Idoia; Martínez Carrasco, Carlos; Berriatua, Eduardo; Amorena Zabalza, Beatriz; Andrés Cara, Damián de; Bertoni, Giuseppe; Reina Arias, Ramsés; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua; Gobierno de Navarra / Nafarroako Gobernua: IIQ010449.RI1; Gobierno de Navarra / Nafarroako Gobernua: IIQ14064.RI1; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaSmall ruminant lentivirus (SRLV) infection causes losses in the small ruminant industry due to reduced animal production and increased replacement rates. Infection of wild ruminants in close contact with infected domestic animals has been proposed to play a role in SRLV epidemiology, but studies are limited and mostly involve hybrids between wild and domestic animals. In this study, SRLV seropositive red deer, roe deer and mouflon were detected through modified ELISA tests, but virus was not successfully amplified using a set of different PCRs. Apparent restriction of SRLV infection in cervids was not related to the presence of neutralizing antibodies. In vitro cultured skin fibroblastic cells from red deer and fallow deer were permissive to the SRLV entry and integration, but produced low quantities of virus. SRLV got rapidly adapted in vitro to blood-derived macrophages and skin fibroblastic cells from red deer but not from fallow deer. Thus, although direct detection of virus was not successfully achieved in vivo, these findings show the potential susceptibility of wild ruminants to SRLV infection in the case of red deer and, on the other hand, an in vivo SRLV restriction in fallow deer. Altogether these results may highlight the importance of surveilling and controlling SRLV infection in domestic as well as in wild ruminants sharing pasture areas, and may provide new natural tools to control SRLV spread in sheep and goats.Publication Open Access Lentinula edodes β-glucan enriched diet induces pro- and anti-inflammatory macrophages in rabbit(Taylor & Francis, 2017) Crespo Otano, Helena; Guillén, Hugo; Pablo Maiso, Lorena de; Gómez Arrebola, Carmen; Rodríguez, Gregorio; Glaría Ezquer, Idoia; Andrés Cara, Damián de; Reina Arias, Ramsés; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutuaβ-glucans exhibited in cell walls of several pathogens as bacteria or fungi are sensed by pathogen recognition receptors such as scavenger receptors present in antigen presenting cells, i.e., macrophages. β-glucans obtained from Shiitake mushrooms were chemically characterized. A β-glucan supplemented diet was assayed for 30 days in rabbits aiming to characterize the immune response elicited in blood-derived macrophages. M1 and M2 profiles of macrophage differentiation were confirmed in rabbits by in vitro stimulation with IFN-γ and IL-4 and marker quantification of each differentiation pathway. Blood derived macrophages from rabbits administered in vivo with the β-glucan supplemented diet showed higher IL-4, IFN-γ and RAGE together with lower IL-10 relative expression, indicative of an ongoing immune response. Differences in IL-1β, IL-13 and IL-4 expression were also found in rabbit sera by ELISA suggesting further stimulation of the adaptive response. Recent challenges in the rabbit industry include the search of diet supplements able to elicit an immune stimulation with particular interest in facing pathogens such as viruses or bacteria. β–glucans from fungi may contribute to maintain an immune steady state favouring protection and thus reducing antibiotic treatment.Publication Open Access Lack of relationship between Visna/maedi infection and scrapie resistance genetic markers(Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), 2014) Salazar, Eider; Berriatua, Eduardo; Pérez, Marta María; Marín, Belén; Acín, Cristina; Martín Burriel, Inmaculada; Reina Arias, Ramsés; Andrés Cara, Damián de; Amorena Zabalza, Beatriz; Badiola, Juan José; Luján, Lluís; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako InstitutuaThe relationship between Visna/maedi virus (VMV) antibody status and scrapie genetic resistance of 10,611 Rasa Aragonesa sheep from 17 flocks in Aragón (Spain) was investigated. The fifteen most common PRNP gene haplotypes and genotypes were identified and the genotypes were classified into the corresponding scrapie risk groups (groups 1 to 5). ARQ (93.3%) and ARR (31.8%) were the most common haplotypes and ARQ/ARQ (56%) and ARR/ARQ (25.6%) were the most common genotypes. The frequencies of scrapie risk groups 1, 2, 3, 4 and 5 were 3.3%, 27.3%, 63.5%, 1.2% and 4.8%, respectively. Overall Visna/maedi seroprevalence was 53% and flock seroprevalence ranged between 21-86%. A random effects logistic regression model indicated that sheep VMV serological status (outcome variable) was not associated with any particular scrapie risk group. Instead, VMV seropositivity progressively increased with age, was signif icantly greater in females compared to males and varied between flocks. The absence of a relationship between VMV infection and scrapie genotypes is important for VMV control and specifically for sheep participating in an ELISA-based Visna/maedi control program.Publication Open Access Molecular signature of aluminum hydroxide adjuvant in ovine PBMCs by integrated mRNA and microRNA transcriptome sequencing(Frontiers Media, 2018) Varela Martínez, Endika; Abendaño, Naiara; Asín, Javier; Sistiaga Poveda, Maialen; Pérez, Marta María; Reina Arias, Ramsés; Andrés Cara, Damián de; Luján, Lluís; Jugo, Begoña M.; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako InstitutuaThere have been few in vivo studies on the effect of aluminum hydroxide adjuvant and its influence on the immune response to vaccination. In this study, lambs received a parallel subcutaneous treatment with either commercial vaccines containing aluminum hydroxide or an equivalent dose of this compound only with the aim of identifying the activated molecular signature. Blood samples were taken from each animal at the beginning and at the end of the experiment and PBMCs isolated. Total RNA and miRNA libraries were prepared and sequenced. After alignment to the Oar3.1 reference genome and differential expression with 3 programs, gene enrichment modeling was performed. For miRNAs, miRBase and RNAcentral databases were used for detection and characterization. Three expression comparisons were made: vaccinated animals at the beginning and at the end of the treatment, adjuvanted animals at the same times, and animals of both treatments at the end of the experiment. After exposure to both treatments, a total of 2,473; 2,980 and 429 differentially expressed genes were identified in vaccinated animals, adjuvanted animals and animals at the end of both treatments, respectively. In both adjuvant and vaccine treated animals the NF-κB signaling pathway was enriched. On the other hand, it can be observed a downregulation of cytokines and cytokine receptors in the adjuvanted group compared to the vaccinated group at the final time, suggesting a milder induction of the immune response when the adjuvant is alone. As for the miRNA analysis, 95 miRNAs were detected: 64 previously annotated in Ovis aries, 11 annotated in Bos taurus and 20 newly described. Interestingly, 6 miRNAs were differentially expressed in adjuvant treated animals, and 3 and 1 in the other two comparisons. Lastly, an integrated miRNA-mRNA expression profile was developed, in which a miRNA-mediated regulation of genes related to DNA damage stimulus was observed. In brief, it seems that aluminum-containing adjuvants are not simple delivery vehicles for antigens, but also induce endogenous danger signals that can stimulate the immune system. Whether this contributes to long-lasting immune activation or to the overstimulation of the immune system remains to be elucidated.