Vento Álvarez, José Raúl

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Vento Álvarez

First Name

José Raúl

person.page.departamento

Ingeniería Eléctrica, Electrónica y de Comunicación

person.page.instituteName

ORCID

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 2 of 2
  • PublicationOpen Access
    Increasing the sensitivity of an optic level sensor with a wavelength and phase sensitive single-mode multimode single-mode (SMS) fiber structure
    (IEEE, 2017) Fuentes Lorenzo, Omar; Del Villar, Ignacio; Vento Álvarez, José Raúl; Socorro Leránoz, Abián Bentor; Gallego Martínez, Elieser Ernesto; Corres Sanz, Jesús María; Matías Maestro, Ignacio; Ingeniaritza Elektrikoa eta Elektronikoa; Institute of Smart Cities - ISC; Ingeniería Eléctrica y Electrónica
    The sensitivity of a liquid level sensor based on a single-mode-multimode-single-mode fiber structure has been increased by hydrofluoric acid etching. The etching process was analyzed and monitored both theoretical and experimentally, which permitted to observe that a sinusoidal spectrum can be obtained for low diameters. As an example, a 2.77 fold sensitivity increase was attained by etching from diameter 125 to 50 μm. Moreover, the sinusoidal shape of the optical spectrum permitted to monitor liquid level changes both in wavelength and phase. The cross sensitivity of the sensor to refractive index and temperature was also studied.
  • PublicationOpen Access
    Power over fiber system for heterogeneous sensors multiplexing
    (IEEE, 2024-06-12) Rodríguez Rodríguez, Armando; Vanegas Tenezaca, Evelyn Dayanara; Vento Álvarez, José Raúl; López-Amo Sáinz, Manuel; Bravo Acha, Mikel; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Uniertsitate Publikoa
    This paper presents a Power-over-Fiber based remote electronic and optical fiber sensors multiplexing scheme. The system architecture consists of a 50-km linear cavity Raman-fiber laser that is used for interrogation of FBG optical fiber sensors. Simultaneously, electronic sensors information is modulated in amplitude while the optical sensors' data are encoded in the spectral information. In order to bias the electronic sensors, the residual power of the Raman pump laser is collected in an energy harvesting unit. This electric power is used for biasing an ATTiny85 control unit and two electro-optical modulators. A proof-of-concept is presented where a couple of optical fiber-Bragg-gratings sensors collect strain information that is self-compensated in temperature according to the digital data achieved from the electronic sensors. A 9.6 kbit/s data rate was achieved using Mach-Zehnder amplitude modulators and a maximum 35 ksample/s was retrieved using a high-speed C-band spectrometer and performing spectral analysis via a software developed in Python. Authors