Astrain Ulibarrena, David
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Astrain Ulibarrena
First Name
David
person.page.departamento
Ingeniería
person.page.instituteName
ISC. Institute of Smart Cities
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
59 results
Search Results
Now showing 1 - 10 of 59
Publication Open Access Experimental investigation of the applicability of a thermoelectric generator to recover waste heat from a combustion chamber(Elsevier, 2015) Aranguren Garacochea, Patricia; Astrain Ulibarrena, David; Rodríguez García, Antonio; Martínez Echeverri, Álvaro; Ingeniería Mecánica, Energética y de Materiales; Mekanika, Energetika eta Materialen IngeniaritzaA thermoelectric generator prototype has been built; it produces 21.56 W of net power, the produced thermoelectric power minus the consumption of the auxiliary equipment, using an area of 0.25 m2 (approximately 100 W/m2). The prototype is located at the exhaust of a combustion chamber and it is provided with 48 thermoelectric modules and two different kinds of heat exchangers, finned heat sinks and heat pipes. Globally, the 40 % of the primary energy used is thrown to the ambient as waste heat; one of the many different applications in which thermoelectricity can be applied is to harvest waste heat to produce electrical power. Besides, the influence on the thermoelectric and on the net power generation of key parameters such as the temperature and mass flow of the exhaust gases, the heat dissipation systems in charge of dispatching the heat into the ambient and the consumption of the auxiliary equipment has been studied. In terms of heat dissipation, the heat pipes outperform the finned dissipators, a 43 % more net power is obtained.Publication Open Access Thermoelectric generator for high temperature geothermal anomalies: experimental development and field operation(Elsevier, 2023) Alegría Cía, Patricia; Catalán Ros, Leyre; Araiz Vega, Miguel; Casi Satrústegui, Álvaro; Astrain Ulibarrena, David; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaIn the current climate and energy context, it is important to develop technologies that permit increase the use of renewable sources such as geothermal energy. Enhancing the use of this renewable source is particularly important in some places, due to its availability and the enormous dependence on fossil fuels, as is the case of the Canary Islands. This work proposes the use of thermoelectric generators with heat exchangers working by phase change to transform the heat from the shallow high temperature geothermal anomalies on the island of Lanzarote directly into electricity, since the use of conventional geothermal power plants would not be possible because they would damage the protected environment. To bring this proposal to reality, this work has succeeded in developing and field-installing a geothermal thermoelectric generator that operates without moving parts thanks to its phase-change heat exchangers. This robust generator do not require maintenance nor auxiliary consumption, and produces a minimal environmental impact, it is noiseless, and the use of water as working fluid makes it completely harmless. The developed device consists of a thermosyphon as hot side heat exchanger, thermoelectric modules and cold side heat exchangers also based in phase change. Tests were carried out in the laboratory at various heat source temperatures and varying the number of thermoelectric modules. It was determined that installing more modules decreases the efficiency per module (from 4.83% with 4 modules to 4.59% with 8 modules at a temperature difference between sources of 235 °C), but for the number of modules tested the total power increases, so the field installation was carried out with 8 modules. After the good results in the laboratory, it was satisfactorily installed at Timanfaya National Park (Lanzarote, Spain) in a borehole with gases at 465 °C. This generator presents a maximum output power of 36 W (4.5 W per module), and is generating 286.94 kWh per year, demonstrating the great potential of the developed thermoelectric generators to build a larger-scale renewable installation.Publication Open Access Design and optimization of thermoelectric generators for harnessing geothermal anomalies: a computational model and validation with experimental field results(Elsevier, 2024) Alegría Cía, Patricia; Catalán Ros, Leyre; Araiz Vega, Miguel; Erro Iturralde, Irantzu; Astrain Ulibarrena, David; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaThermoelectric generators have been recently proved to be a feasible alternative to harness hot dry rock fields with very promising results transforming the geothermal heat into electricity. This research deepens in the study of these generators, developing a versatile computational model that serves as a tool to design and optimize this type of thermoelectric generators. This tool is important to develop this thermoelectric technology on a large scale, to produce clean and renewable electrical energy especially in the Timanfaya National Park, in Lanzarote (Spain), where some of the most important shallow geothermal anomalies in the world are located, in order to promote self-consumption in this zone. However, it could be employed in other areas with different boundary conditions. The model, based in the finite difference method applied to the thermal-electrical analogy of a geothermal thermoelectric generator, has been validated with the experimental field results of two thermoelectric generators installed in two different zones of geothermal anomalies. It has achieved a relative error of less than 10% when predicting the power and between 0.5–1.6% in the annual energy generation, what makes it a very reliable and useful computational tool. The developed model has been employed for the first time to estimate the electrical energy that could be generated if harnessing the characterized area of anomalies in Lanzarote. Here, given the continuity of geothermal energy, 7.24 GWh per year could be generated, which means annually 1.03 MWh/m2.Publication Open Access Experimental and computational investigation of passive heat exchangers to enhance the performance of a geothermal thermoelectric generator(Elsevier, 2024) Pascual Lezaun, Nerea; Alegría Cía, Patricia; Araiz Vega, Miguel; Martínez Echeverri, Álvaro; Astrain Ulibarrena, David; Ingeniería; Ingeniaritza; Institute of Smart Cities - ISCThermoelectric devices hold significant promise for generating electricity from geothermal heat, enabling the powering of measuring equipment in remote locations without the need for moving parts. Nevertheless, most developed geothermal thermoelectric generators employ fans and pumps to enhance heat transfer, thereby compromising the robustness and reliability inherent to thermoelectricity. Furthermore, there is a lack of research on passive heat exchangers for geothermal thermoelectric generators, particularly in studying their operation under a wide range of meteorological conditions. Therefore, this paper conducts a comprehensive analysis of passive heat exchangers for the cold side of the generators. Phase-change-based heat exchangers differing in their length and fluid are studied experimentally, along with a fin dissipator. Additionally, the influence of wind velocity on heat transfer and mechanical requirements is further explored through a Computational Fluid Dynamics model. The most significant outcome is quantifying the impact of the design parameters and operational variables on the electrical production of the thermoelectric generator. Accordingly, this research aims to broaden the application of these generators to extreme environments, such as Deception Island in Antarctica. Under average operational conditions, generators incorporating 400 mm water heat pipes generate 0.95 W per thermoelectric module, while those incorporating heat pipes with methanol achieve an average of 0.70 W. Moreover, water and methanol-based systems produce 120% and 60% more power than generators using a fin dissipator. Nonetheless, for temperatures beyond -6.5 °C, water might freeze and the methanol-based heat exchangers become more suitable.Publication Open Access Corrosion behavior in volcanic soils: in search of candidate materials for thermoelectric devices(MDPI, 2021-12-21) Berlanga Labari, Carlos; Catalán Ros, Leyre; Palacio, José F.; Pérez Artieda, Miren Gurutze; Astrain Ulibarrena, David; Ingeniaritza; Institute of Smart Cities - ISC; Ingeniería; Institute for Advanced Materials and Mathematics - INAMAT2Thermoelectric generators have emerged as an excellent solution for the energy supply of volcanic monitoring stations due to their compactness and continuous power generation. Nevertheless, in order to become a completely viable solution, it is necessary to ensure that their materials are able to resist in the acidic environment characteristic of volcanoes. Hence, the main objective of this work is to study the resistance to corrosion of six different metallic materials that are candidates for use in the heat exchangers. For this purpose, the metal probes have been buried for one year in the soil of the Teide volcano (Spain) and their corrosion behavior has been evaluated by using different techniques (OM, SEM, and XRD). The results have shown excessive corrosion damage to the copper, brass, and galvanized steel tubes. After evaluating the corrosion behavior and thermoelectric performance, AISI 304 and AISI 316 stainless steels are proposed for use as heat exchangers in thermoelectric devices in volcanic environments.Publication Open Access New opportunities for electricity generation in shallow hot dry rock fields: a study of thermoelectric generators with different heat exchangers(Elsevier, 2019) Catalán Ros, Leyre; Aranguren Garacochea, Patricia; Araiz Vega, Miguel; Pérez Artieda, Miren Gurutze; Astrain Ulibarrena, David; Institute of Smart Cities - ISCDespite being one of the largest renewable sources, geothermal energy is not widely utilized for electricity generation. In order to leverage shallow hot dry rock (HDR) fields, the present paper proposes an alternative to enhanced geothermal systems (EGS): thermoelectric generators. Based on the conditions of Timanfaya National Park, a prototype has been built to experimentally analyze the feasibility of the proposed solution. The prototype is composed by a two phase closed thermosyphon (TPCT) as hot side heat exchanger, two thermoelectric modules, and it considers different cold side heat exchangers: fin dissipators assisted by a fan and loop thermosyphons, both with various geometries. Experiments have demonstrated that loop thermosyphons represent the best alternative due to their low thermal resistance and, especially, due to their lack of auxiliary consumption, leading to a maximum net power generation of 3.29 W per module with a temperature difference of 180 °C (200 °C in the hot side and 20 °C as ambient temperature), 54% more than with fin dissipators. Hence, there exists a new opportunity for electricity generation in shallow hot dry rock fields: thermoelectric generators with biphasic thermosyphons as heat exchangers, a patented and robust solution.Publication Open Access Prospects of waste-heat recovery from a real industry using thermoelectric generators: economic and power output analysis(Elsevier, 2020) Araiz Vega, Miguel; Casi Satrústegui, Álvaro; Catalán Ros, Leyre; Martínez Echeverri, Álvaro; Astrain Ulibarrena, David; Ingeniaritza; Institute of Smart Cities - ISC; Ingeniería; Gobierno de Navarra / Nafarroako Gobernua, 0011-1365-2018-000101One of the options to reduce industrial energy costs and the environmental impact is to recover the waste-heat produce in some processes. This paper proposes the use of thermoelectric generators at a stone wool manufacturing plant to transform waste-heat from a hot gas flow into useful electricity. A combination of two computational models, previously developed and validated, has been used to perform the optimization from a double point of view: power output and economic cost. The proposed thermoelectric generator includes fin dissipaters and biphasic thermosyphons as the hot and cold side heat exchangers respectively. The model takes into account the temperature drop along the duct where the gases flow, the electric consumption of the auxiliary equipment, and the configuration and geometry of the heat exchangers. After the simulations a maximum net power production of 45 838 W is achieved considering an occupancy ratio of 0.40 and a fin spacing of 10 mm. The installation cost is minimized to 10.6 €/W with an occupancy ratio of 0.24. Besides, the Levelised Cost of Electricity, LCOE, is estimated for a thermoelectric generator for the first time. It is necessary to use standar methodologies to compare this technology to others. The LCOE estimated for the proposed design is around 15 c€/kWh within the ranges of current energy sources, proving, in this way, the capabilities of waste-heat recovery from industrial processes at reasonable prices with thermoelectric generators.Publication Open Access Prospects of autonomous volcanic monitoring stations: experimental investigation on thermoelectric generation from fumaroles(MDPI, 2020) Catalán Ros, Leyre; Araiz Vega, Miguel; Padilla, Germán D.; Hernández, Pedro A.; Pérez, Nemesio M.; García de la Noceda, Celestino; Albert, José F.; Astrain Ulibarrena, David; Ingeniaritza; Institute of Smart Cities - ISC; IngenieríaFumaroles represent evidence of volcanic activity, emitting steam and volcanic gases at temperatures between 70 and 100 °C. Due to the well-known advantages of thermoelectricity, such as reliability, reduced maintenance and scalability, the present paper studies the possibilities of thermoelectric generators, devices based on solid-state physics, to directly convert fumaroles heat into electricity due to the Seebeck effect. For this purpose, a thermoelectric generator composed of two bismuth-telluride thermoelectric modules and heat pipes as heat exchangers was installed, for the first time, at Teide volcano (Canary Islands, Spain), where fumaroles arise in the surface at 82 °C. The installed thermoelectric generator has demonstrated the feasibility of the proposed solution, leading to a compact generator with no moving parts that produces a net generation between 0.32 and 0.33 W per module given a temperature difference between the heat reservoirs encompassed in the 69–86 °C range. These results become interesting due to the possibilities of supplying power to the volcanic monitoring stations that measure the precursors of volcanic eruptions, making them completely autonomous. Nonetheless, in order to achieve this objective, corrosion prevention measures must be taken because the hydrogen sulfide contained in the fumaroles reacts with steam, forming sulfuric acid.Publication Open Access Zero-power-consumption thermoelectric system to prevent overheating in solar collectors(Elsevier, 2014) Martínez Echeverri, Álvaro; Astrain Ulibarrena, David; Rodríguez García, Antonio; Ingeniería Mecánica, Energética y de Materiales; Mekanika, Energetika eta Materialen IngeniaritzaHighly promoted by the European Union Climate and Energy Package for 2020, solar collectors stand out as the most promising alternative to meet water heating demands. One of the most limiting problems in these systems involves the overheating of the working fluid, resulting in rapid fluid degradation, scaling and premature component failure. This paper presents the computational design of a zero-power-consumption system that combines thermoelectric-self-cooling technology and thermosyphon effect to dissipate the excess heat from a real solar-collector installation. Thermoelectric self-cooling is a novel thermoelectric application proven to enhance the heat dissipation of any hot spot without electricity consumption. The simplest design outperforms currently-used static and dynamic dissipaters for overheating protection in solar collectors, since it increases the global heat transfer coefficient of a static dissipater by 75 % and requires no electricity. Likewise, the final design presents a global heat transfer coefficient of 15.23 W/(m2K), 155 % higher than that provided by static dissipaters, forming a reliable, robust and autonomous system that stands out as a promising alternative to prevent the overheating of solar collectors.Publication Open Access Study of a complete thermoelectric generator behavior including water-to-ambient heat dissipation on the cold side(Springer US, 2014) Aranguren Garacochea, Patricia; Astrain Ulibarrena, David; Martínez Echeverri, Álvaro; Ingeniería Mecánica, Energética y de Materiales; Mekanika, Energetika eta Materialen IngeniaritzaThe reduction of the thermal resistances of the heat exchangers of a thermoelectric generation system (TEG), leads to a significant increase in the TEG efficiency. For the cold side of a thermoelectric module (TEM), a wide range of heat exchangers has been studied, form simple finned dissipators to more complex water (water-glycol) heat exchangers. As Nusselt numbers are much higher in water heat exchangers than in conventional air finned dissipators, convective thermal resistances are better. However, to conclude which heat exchanger leads to higher efficiencies, it is necessary to include the whole system involved in the heat dissipation, that is, TEM-to-water heat exchanger, water-to-ambient heat exchanger, as well as the required pumps and fans. This paper presents a dynamic computational model able to simulate the complete behavior of a TEG, including both heat exchangers. The model uses the heat transfer and hydraulic equations to compute TEM-to-water and water-to-ambient thermal resistances, along with the resistance of the hot side heat exchanger at different operating conditions. Likewise, the model includes all the thermoelectric effect with temperature-dependent properties. The model calculates the net power generation at different configurations, providing a methodology to design and optimize the heat exchange in order to maximize the net power generation for a whole variety of TEGs.