Astrain Ulibarrena, David

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Astrain Ulibarrena

First Name

David

person.page.departamento

Ingeniería

person.page.instituteName

ISC. Institute of Smart Cities

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 10 of 22
  • PublicationOpen Access
    Thermoelectric generators for waste heat harvesting: a computational and experimental approach
    (Elsevier, 2017) Aranguren Garacochea, Patricia; Araiz Vega, Miguel; Astrain Ulibarrena, David; Martínez Echeverri, Álvaro; Ingeniería Mecánica, Energética y de Materiales; Mekanika, Energetika eta Materialen Ingeniaritza
    Waste heat generation has a widespread presence into daily applications, however, due to the low-temperature grade which presents, its exploitation with the most common technologies is complicated. Thermoelectricity presents the possibility of harvesting any temperature grade heat; besides it also includes many other advantages which make thermoelectric generators perfect for generating electric power from waste heat. A prototype divided into two levels along the chimney which uses the waste heat of a combustion has been built. The experimentation has been used to determine the parameters that influence the generation and to validate a generic computational model able to predict the thermoelectric generation of any application, but specially applications where waste heat is harvested. The temperature and mass flow of the flue gases and the load resistance determine the generation, and consequently, these parameters have been included into the model, among many others. This computational model incorporates all the elements included into the generators (heat exchangers, ceramics, unions) and all the thermoelectric phenomena and moreover, it takes into account the temperature loss of the flue gases while circulating along the thermoelectric generator. The built prototype presents a 65 % reduction in the generation of the two levels of the thermoelectric generator due to the temperature loss of the flue gases. The general computational model predicts the thermoelectric generation with an accuracy of the ±12 %.
  • PublicationOpen Access
    New opportunities for electricity generation in shallow hot dry rock fields: a study of thermoelectric generators with different heat exchangers
    (Elsevier, 2019) Catalán Ros, Leyre; Aranguren Garacochea, Patricia; Araiz Vega, Miguel; Pérez Artieda, Miren Gurutze; Astrain Ulibarrena, David; Institute of Smart Cities - ISC
    Despite being one of the largest renewable sources, geothermal energy is not widely utilized for electricity generation. In order to leverage shallow hot dry rock (HDR) fields, the present paper proposes an alternative to enhanced geothermal systems (EGS): thermoelectric generators. Based on the conditions of Timanfaya National Park, a prototype has been built to experimentally analyze the feasibility of the proposed solution. The prototype is composed by a two phase closed thermosyphon (TPCT) as hot side heat exchanger, two thermoelectric modules, and it considers different cold side heat exchangers: fin dissipators assisted by a fan and loop thermosyphons, both with various geometries. Experiments have demonstrated that loop thermosyphons represent the best alternative due to their low thermal resistance and, especially, due to their lack of auxiliary consumption, leading to a maximum net power generation of 3.29 W per module with a temperature difference of 180 °C (200 °C in the hot side and 20 °C as ambient temperature), 54% more than with fin dissipators. Hence, there exists a new opportunity for electricity generation in shallow hot dry rock fields: thermoelectric generators with biphasic thermosyphons as heat exchangers, a patented and robust solution.
  • PublicationOpen Access
    Improvement of a thermoelectric and vapour compression hybrid refrigerator
    (Elsevier, 2012) Astrain Ulibarrena, David; Martínez Echeverri, Álvaro; Rodríguez García, Antonio; Ingeniería Mecánica, Energética y de Materiales; Mekanika, Energetika eta Materialen Ingeniaritza
    This paper presents the improvement in the performance of a domestic hybrid refrigerator that combines vapour compression technology for the cooler and freezer compartments, and thermoelectric technology for a new compartment. The heat emitted by the Peltier modules is discharged into the freezer compartment, forming a cascade refrigeration system. This configuration leads to a significant improvement in the coefficient of operation. Thus, the electric power consumption of the modules and the refrigerator decrease by 95 % and 20 % respectively, with respect to those attained with a cascade refrigeration system connected with the cooler compartment. The optimization process is based on a computational model that simulates the behaviour of the whole refrigerator. Two prototypes have been built and tested. Experimental results indicate that the temperature of the new compartment is easily set up at any value between 0 and -4 ºC, the oscillation of this temperature is always lower than 0.4 ºC, and the electric power consumption is low enough to include this hybrid refrigerator into energy efficiency class A, according European rules and regulations.
  • PublicationOpen Access
    Zero-power-consumption thermoelectric system to prevent overheating in solar collectors
    (Elsevier, 2014) Martínez Echeverri, Álvaro; Astrain Ulibarrena, David; Rodríguez García, Antonio; Ingeniería Mecánica, Energética y de Materiales; Mekanika, Energetika eta Materialen Ingeniaritza
    Highly promoted by the European Union Climate and Energy Package for 2020, solar collectors stand out as the most promising alternative to meet water heating demands. One of the most limiting problems in these systems involves the overheating of the working fluid, resulting in rapid fluid degradation, scaling and premature component failure. This paper presents the computational design of a zero-power-consumption system that combines thermoelectric-self-cooling technology and thermosyphon effect to dissipate the excess heat from a real solar-collector installation. Thermoelectric self-cooling is a novel thermoelectric application proven to enhance the heat dissipation of any hot spot without electricity consumption. The simplest design outperforms currently-used static and dynamic dissipaters for overheating protection in solar collectors, since it increases the global heat transfer coefficient of a static dissipater by 75 % and requires no electricity. Likewise, the final design presents a global heat transfer coefficient of 15.23 W/(m2K), 155 % higher than that provided by static dissipaters, forming a reliable, robust and autonomous system that stands out as a promising alternative to prevent the overheating of solar collectors.
  • PublicationOpen Access
    Experimental study and optimization of thermoelectric-driven autonomous sensors for the chimney of a biomass power plant
    (2014) Rodríguez García, Antonio; Astrain Ulibarrena, David; Martínez Echeverri, Álvaro; Aranguren Garacochea, Patricia; Ingeniería Mecánica, Energética y de Materiales; Mekanika, Energetika eta Materialen Ingeniaritza
    In the work discussed in this paper a thermoelectric generator was developed to harness waste heat from the exhaust gas of a boiler in a biomass power plant and thus generate electric power to operate a flowmeter installed in the chimney, to make it autonomous. The main objective was to conduct an experimental study to optimize a previous design obtained after computational work based on a simulation model for thermoelectric generators. First, several places inside and outside the chimney were considered as sites for the thermoelectricity-driven autonomous sensor. Second, the thermoelectric generator was built and tested to assess the effect of the cold-side heat exchanger on the electric power, power consumption by the flowmeter, and transmission frequency. These tests provided the best configuration for the heat exchanger, which met the transmission requirements for different working conditions. The final design is able to transmit every second and requires neither batteries nor electric wires. It is a promising application in the field of thermoelectric generation.
  • PublicationOpen Access
    Geothermal thermoelectric generator for Timanfaya National Park
    (2019) Catalán Ros, Leyre; Astrain Ulibarrena, David; Aranguren Garacochea, Patricia; Araiz Vega, Miguel; Ingeniaritza; Institute of Smart Cities - ISC; Ingeniería
    Despite being one of the largest renewable sources, geothermal energy is not widely utilized for electricity generation. In the case of shallow Hot Dry Rock (HDR) fields, thermoelectric generators can entail a sustainable alternative to Enhanced Geothermal Systems (EGS). The present work studies two configurations of thermoelectric generators for Timanfaya National Park (Spain), one of the most important Hot Dry Rock fields in the world, with temperatures of 500°C at only 3 meters deep. The first configuration includes biphasic thermosyphons as heat exchangers for both sides, leading to a completely passive thermoelectric generator. The second configuration uses fin dissipators as cold-side heat exchangers.
  • PublicationOpen Access
    Development and experimental validation of a thermoelectric test bench for laboratory lessons
    (OmniaScience, 2013) Rodríguez García, Antonio; Astrain Ulibarrena, David; Martínez Echeverri, Álvaro; Aranguren Garacochea, Patricia; Pérez Artieda, Miren Gurutze; Ingeniería Mecánica, Energética y de Materiales; Mekanika, Energetika eta Materialen Ingeniaritza
    The refrigeration process reduces the temperature of a space or a given volume while the power generation process employs a source of thermal energy to generate electrical power. Because of the importance of these two processes, training of engineers in this area is of great interest. In engineering courses it is normally studied the vapor compression and absorption refrigeration, and power generation systems such as gas turbine and steam turbine. Another type of cooling and generation less studied within the engineering curriculum, having a great interest, it is cooling and thermal generation based on Peltier and Seebeck effects. The theoretical concepts are useful, but students have difculties understanding the physical meaning of their possible applications. Providing students with tools to test and apply the theory in real applications, will lead to a better understanding of the subject. Engineers must have strong theoretical, computational and also experimental skills. A prototype test bench has been built and experimentally validated to perform practical lessons of thermoelectric generation and refrigeration. Using this prototype students learn the most effective way of cooling systems and thermal power generation as well as basic concepts associated with thermoelectricity. It has been proven that students learn the process of data acquisition, and the technology used in thermoelectric devices. These practical lessons are implemented for a 60 people group of students in the development of subject of Thermodynamic including in the Degree in Engineering in Industrial Technologies of Public University of Navarra.
  • PublicationOpen Access
    Thermoelectric power generation optimization by thermal design means
    (InTechOpen, 2016) Aranguren Garacochea, Patricia; Astrain Ulibarrena, David; Mekanika, Energetika eta Materialen Ingeniaritza; Institute of Smart Cities - ISC; Ingeniería Mecánica, Energética y de Materiales
    One of the biggest challenges of the twenty‐first century is to satisfy the demand for electrical energy in an environmentally speaking clean way. Thus, it is very important to search for new alternative energy sources along with increasing the efficiency of current processes. Thermoelectric power generation, by means of harvesting waste heat and converting it into electricity, can help to achieve above‐mentioned goal. Nowadays, efficiency of thermoelectric power generators limits them to become key technology in electric power generation, but their performance has potential of being optimized, if thermal design of such generators is optimized. Heat exchangers located on both sides of thermoelectric modules (TEMs), mass flow of refrigerants and occupancy ratio (the area covered by TEMs related to base area), among others, need to be fine‐tuned in order to obtain the maximum net power generation (thermoelectric power generation minus consumption of auxiliary equipment). Finned dissipator, cold plate, heat pipe and thermosiphon are experimentally tested to maximize net thermoelectric generation on real‐working furnace based on computational model. Maximum generation of 137 MWh/year using thermosiphons is achieved with 32% of area covered by TEMs.
  • PublicationOpen Access
    Heat pipes thermal performance for a reversible thermoelectric cooler-heat pump for a nZEB
    (Elsevier, 2019) Aranguren Garacochea, Patricia; Díaz de Garayo, Sergio; Martínez Echeverri, Álvaro; Araiz Vega, Miguel; Astrain Ulibarrena, David; Ingeniaritza; Institute of Smart Cities - ISC; Ingeniería
    The nZEB standards reduce the energy demand of these buildings to a minimum, obtaining this little energy from renewable resources. Taking these aspect into consideration, a thermoelectric cooler-heat pump is proposed to achieve the comfort temperature along the whole year. The same device can provide heat in winter and it can cool down the buildings in summer just by switching the voltage supply polarity. Heat pipes are studied to work on both sides of the thermoelectric modules in order to optimize the heat transfer as these devices present really good thermal resistances and they can work in any position. However, they present pretty different thermal resistances if they work on the cold or on the hot side of the modules. A methodology to thermally characterize these heat exchangers working in both orientations is proposed and a validated computational model is developed to optimize the thermoelectric cooler-heat pump for a nZEB application. The number of thermoelectric modules, the position of the device, the ambient temperature and the air mass flow determine the operation and consequently they need to be studied in order to optimize the application.
  • PublicationOpen Access
    Experimental investigation of the applicability of a thermoelectric generator to recover waste heat from a combustion chamber
    (Elsevier, 2015) Aranguren Garacochea, Patricia; Astrain Ulibarrena, David; Rodríguez García, Antonio; Martínez Echeverri, Álvaro; Ingeniería Mecánica, Energética y de Materiales; Mekanika, Energetika eta Materialen Ingeniaritza
    A thermoelectric generator prototype has been built; it produces 21.56 W of net power, the produced thermoelectric power minus the consumption of the auxiliary equipment, using an area of 0.25 m2 (approximately 100 W/m2). The prototype is located at the exhaust of a combustion chamber and it is provided with 48 thermoelectric modules and two different kinds of heat exchangers, finned heat sinks and heat pipes. Globally, the 40 % of the primary energy used is thrown to the ambient as waste heat; one of the many different applications in which thermoelectricity can be applied is to harvest waste heat to produce electrical power. Besides, the influence on the thermoelectric and on the net power generation of key parameters such as the temperature and mass flow of the exhaust gases, the heat dissipation systems in charge of dispatching the heat into the ambient and the consumption of the auxiliary equipment has been studied. In terms of heat dissipation, the heat pipes outperform the finned dissipators, a 43 % more net power is obtained.