Astrain Ulibarrena, David
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Astrain Ulibarrena
First Name
David
person.page.departamento
Ingeniería
person.page.instituteName
ISC. Institute of Smart Cities
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
59 results
Search Results
Now showing 1 - 10 of 59
Publication Open Access Annual energy performance of a thermoelectric heat pump combined with a heat recovery unit to HVAC one passive house dwelling(Elsevier, 2022) Díaz de Garayo, Sergio; Martínez Echeverri, Álvaro; Astrain Ulibarrena, David; Ingeniería; Ingeniaritza; Institute of Smart Cities - ISCThis paper proposes a HVAC system that integrates a thermoelectric heat pump with a double flux ventilation system and a sensible heat recovery unit able to provide heating, cooling and ventilation to a 74.3 m2 Passive House certified dwelling in Pamplona (Spain). This study computationally investigates the energy performance of the system and the comfort conditions of the dwelling for one year long. The thermoelectric HVAC system maintains adequate comfort conditions with an indoor temperature between 20–23 °C in wintertime and 23–25 °C during summer, thanks to the precise control of the voltage supplied to the thermoelectric heat pump that can regulate the heating/cooling capacity from 5 to 100 %. The system consumes 1143.3 kWh/y (15.3 kWh/m2y) of electric energy, that can be provided by 4 photovoltaic panels of 250 Wp each. This system is then compared with a vapor compression heat pump with a COP of 4.5. The vapor compression system reduces the electric energy consumption by 36.1 % with respect to the thermoelectric system, which allows saving only 270 Wp (1–2 PV panels). This demonstrates the promising application of thermoelectricity for HVAC in passive houses.Publication Open Access Impact of a thermoelectric subcooler heat exchanger on a carbon dioxide transcritical refrigeration facility(Elsevier, 2022) Casi Satrústegui, Álvaro; Aranguren Garacochea, Patricia; Araiz Vega, Miguel; Alegría Cía, Patricia; Astrain Ulibarrena, David; Ingeniaritza; Institute of Smart Cities - ISC; Ingeniería; Gobierno de Navarra / Nafarroako Gobernua; Universidad Pública de Navarra / Nafarroako UnibertsitaTo improve the performance of vapour compression refrigeration cycles, the inclusion of a thermoelectric subcooler for low-medium power units has been the focus of recent studies due to its robustness, compactness and simplicity of operation. In thermoelectric systems, it has been demonstrated that the heat exchangers used in the hot and cold side of the thermoelectric modules have a critical impact in the performance of the system. This influence has not yet been studied for thermoelectric subcooling systems in vapour compression cycles. This work, for the first time, evaluates the impact that the heat exchangers of a thermoelectric subcooler, included in a transcritical carbon dioxide refrigeration cycle, have, in the performance of the refrigeration cycle. The influence is quantified in terms of: optimum working conditions, coefficient of performance and cooling capacity. The results show that, through an optimization of the heat exchangers of the thermoelectric subcooler, the performance improvements on the coefficient of performance using this technology are boosted from 11.96 to 14.75 % and the upgrade in the cooling capacity of the system rises from 21.4 to 26.3 %. Moreover, the optimum gas-cooler working pressure of the system is reduced and the optimum voltage supplied to the thermoelectric modules increases.Publication Open Access Thermoelectric generators for waste heat harvesting: a computational and experimental approach(Elsevier, 2017) Aranguren Garacochea, Patricia; Araiz Vega, Miguel; Astrain Ulibarrena, David; Martínez Echeverri, Álvaro; Ingeniería Mecánica, Energética y de Materiales; Mekanika, Energetika eta Materialen IngeniaritzaWaste heat generation has a widespread presence into daily applications, however, due to the low-temperature grade which presents, its exploitation with the most common technologies is complicated. Thermoelectricity presents the possibility of harvesting any temperature grade heat; besides it also includes many other advantages which make thermoelectric generators perfect for generating electric power from waste heat. A prototype divided into two levels along the chimney which uses the waste heat of a combustion has been built. The experimentation has been used to determine the parameters that influence the generation and to validate a generic computational model able to predict the thermoelectric generation of any application, but specially applications where waste heat is harvested. The temperature and mass flow of the flue gases and the load resistance determine the generation, and consequently, these parameters have been included into the model, among many others. This computational model incorporates all the elements included into the generators (heat exchangers, ceramics, unions) and all the thermoelectric phenomena and moreover, it takes into account the temperature loss of the flue gases while circulating along the thermoelectric generator. The built prototype presents a 65 % reduction in the generation of the two levels of the thermoelectric generator due to the temperature loss of the flue gases. The general computational model predicts the thermoelectric generation with an accuracy of the ±12 %.Publication Open Access Design and optimization of thermoelectric generators for harnessing geothermal anomalies: a computational model and validation with experimental field results(Elsevier, 2024) Alegría Cía, Patricia; Catalán Ros, Leyre; Araiz Vega, Miguel; Erro Iturralde, Irantzu; Astrain Ulibarrena, David; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaThermoelectric generators have been recently proved to be a feasible alternative to harness hot dry rock fields with very promising results transforming the geothermal heat into electricity. This research deepens in the study of these generators, developing a versatile computational model that serves as a tool to design and optimize this type of thermoelectric generators. This tool is important to develop this thermoelectric technology on a large scale, to produce clean and renewable electrical energy especially in the Timanfaya National Park, in Lanzarote (Spain), where some of the most important shallow geothermal anomalies in the world are located, in order to promote self-consumption in this zone. However, it could be employed in other areas with different boundary conditions. The model, based in the finite difference method applied to the thermal-electrical analogy of a geothermal thermoelectric generator, has been validated with the experimental field results of two thermoelectric generators installed in two different zones of geothermal anomalies. It has achieved a relative error of less than 10% when predicting the power and between 0.5–1.6% in the annual energy generation, what makes it a very reliable and useful computational tool. The developed model has been employed for the first time to estimate the electrical energy that could be generated if harnessing the characterized area of anomalies in Lanzarote. Here, given the continuity of geothermal energy, 7.24 GWh per year could be generated, which means annually 1.03 MWh/m2.Publication Open Access New opportunities for electricity generation in shallow hot dry rock fields: a study of thermoelectric generators with different heat exchangers(Elsevier, 2019) Catalán Ros, Leyre; Aranguren Garacochea, Patricia; Araiz Vega, Miguel; Pérez Artieda, Miren Gurutze; Astrain Ulibarrena, David; Institute of Smart Cities - ISCDespite being one of the largest renewable sources, geothermal energy is not widely utilized for electricity generation. In order to leverage shallow hot dry rock (HDR) fields, the present paper proposes an alternative to enhanced geothermal systems (EGS): thermoelectric generators. Based on the conditions of Timanfaya National Park, a prototype has been built to experimentally analyze the feasibility of the proposed solution. The prototype is composed by a two phase closed thermosyphon (TPCT) as hot side heat exchanger, two thermoelectric modules, and it considers different cold side heat exchangers: fin dissipators assisted by a fan and loop thermosyphons, both with various geometries. Experiments have demonstrated that loop thermosyphons represent the best alternative due to their low thermal resistance and, especially, due to their lack of auxiliary consumption, leading to a maximum net power generation of 3.29 W per module with a temperature difference of 180 °C (200 °C in the hot side and 20 °C as ambient temperature), 54% more than with fin dissipators. Hence, there exists a new opportunity for electricity generation in shallow hot dry rock fields: thermoelectric generators with biphasic thermosyphons as heat exchangers, a patented and robust solution.Publication Open Access Improvement of a thermoelectric and vapour compression hybrid refrigerator(Elsevier, 2012) Astrain Ulibarrena, David; Martínez Echeverri, Álvaro; Rodríguez García, Antonio; Ingeniería Mecánica, Energética y de Materiales; Mekanika, Energetika eta Materialen IngeniaritzaThis paper presents the improvement in the performance of a domestic hybrid refrigerator that combines vapour compression technology for the cooler and freezer compartments, and thermoelectric technology for a new compartment. The heat emitted by the Peltier modules is discharged into the freezer compartment, forming a cascade refrigeration system. This configuration leads to a significant improvement in the coefficient of operation. Thus, the electric power consumption of the modules and the refrigerator decrease by 95 % and 20 % respectively, with respect to those attained with a cascade refrigeration system connected with the cooler compartment. The optimization process is based on a computational model that simulates the behaviour of the whole refrigerator. Two prototypes have been built and tested. Experimental results indicate that the temperature of the new compartment is easily set up at any value between 0 and -4 ºC, the oscillation of this temperature is always lower than 0.4 ºC, and the electric power consumption is low enough to include this hybrid refrigerator into energy efficiency class A, according European rules and regulations.Publication Open Access Study of thermoelectric systems applied to electric power generation(Elsevier, 2009) Rodríguez García, Antonio; González Vian, José; Astrain Ulibarrena, David; Martínez Echeverri, Álvaro; Ingeniería Mecánica, Energética y de Materiales; Mekanika, Energetika eta Materialen IngeniaritzaA computational model has been developed in order to simulate the thermal and electric behaviour of the thermoelectric generators. This model solves the non linear system of equations of the thermoelectric and heat transfer equations. The inputs of the program are the thermoelectric parameters as a function of the temperature and the boundary conditions, (room temperature and residual heat flux). The outputs are the temperature values of all the elements forming the thermoelectric generator, (performance, electric power, voltage and electric current generated). The model solves the equation system using the finite difference method and semi-empiric expressions for the convection coefficients. It has been built a thermoelectric electric power generation test bench in order to validate and determine the accuracy of the computational model, which maximum error is lower than 5%. The objective of this study is to create a design tool that allows us to solve the system of equations involved in the electric generation process without needing to impose boundary conditions that are not known in the design phase, as the temperature of the Peltier modules. With the computational model we study the influence of the heat flux supplied as well as the room temperature in the electric power generated.Publication Open Access Experimental development of a novel thermoelectric generator without moving parts to harness shallow hot dry rock fields(Elsevier, 2022) Alegría Cía, Patricia; Catalán Ros, Leyre; Araiz Vega, Miguel; Rodríguez García, Antonio; Astrain Ulibarrena, David; Ingeniaritza; Institute of Smart Cities - ISC; IngenieríaNowadays, geothermal energy in shallow hot dry rock fields is not exploited enough due to the high economic and environmental impact as well as the lack of scalability of the existing technologies. Here, thermoelectricity has a great future potential due to its robustness, absence of moving parts and modularity. However, the efficiency of a thermoelectric generator depends highly on the heat exchangers. In this work, a novel geothermal thermoelectric generator is experimentally developed, characterizing different configurations of biphasic heat exchangers to obtain low thermal resistances that allow the maximum efficiency in the thermoelectric modules. As a result, robust and passive heat exchangers were obtained with thermal resistances of 0.07 K/W and 0.4 K/W in the hot and cold sides, respectively. The geothermal thermoelectric generator was built with the most effective heat exchangers and was experimented under different temperature and convection conditions, generating 36 W (17 W by a prototype with 10 modules and 19 W by a prototype with 6 modules) for a temperature difference of 160 °C between the heat source and the environment. Furthermore, the experimental development showed that it is possible to increase electricity generation with a more compact generator, since a decrease in the number of modules from 10 to 6 increases the efficiency from 3.72% to 4.06%. With this research, the feasibility of a novel and robust geothermal thermoelectric generator whose working principle is phase change has been experimentally demonstrated, as well as the importance of compactness to maximize its efficiency and thus, power generation.Publication Open Access Prospects of autonomous volcanic monitoring stations: experimental investigation on thermoelectric generation from fumaroles(MDPI, 2020) Catalán Ros, Leyre; Araiz Vega, Miguel; Padilla, Germán D.; Hernández, Pedro A.; Pérez, Nemesio M.; García de la Noceda, Celestino; Albert, José F.; Astrain Ulibarrena, David; Ingeniaritza; Institute of Smart Cities - ISC; IngenieríaFumaroles represent evidence of volcanic activity, emitting steam and volcanic gases at temperatures between 70 and 100 °C. Due to the well-known advantages of thermoelectricity, such as reliability, reduced maintenance and scalability, the present paper studies the possibilities of thermoelectric generators, devices based on solid-state physics, to directly convert fumaroles heat into electricity due to the Seebeck effect. For this purpose, a thermoelectric generator composed of two bismuth-telluride thermoelectric modules and heat pipes as heat exchangers was installed, for the first time, at Teide volcano (Canary Islands, Spain), where fumaroles arise in the surface at 82 °C. The installed thermoelectric generator has demonstrated the feasibility of the proposed solution, leading to a compact generator with no moving parts that produces a net generation between 0.32 and 0.33 W per module given a temperature difference between the heat reservoirs encompassed in the 69–86 °C range. These results become interesting due to the possibilities of supplying power to the volcanic monitoring stations that measure the precursors of volcanic eruptions, making them completely autonomous. Nonetheless, in order to achieve this objective, corrosion prevention measures must be taken because the hydrogen sulfide contained in the fumaroles reacts with steam, forming sulfuric acid.Publication Open Access Zero-power-consumption thermoelectric system to prevent overheating in solar collectors(Elsevier, 2014) Martínez Echeverri, Álvaro; Astrain Ulibarrena, David; Rodríguez García, Antonio; Ingeniería Mecánica, Energética y de Materiales; Mekanika, Energetika eta Materialen IngeniaritzaHighly promoted by the European Union Climate and Energy Package for 2020, solar collectors stand out as the most promising alternative to meet water heating demands. One of the most limiting problems in these systems involves the overheating of the working fluid, resulting in rapid fluid degradation, scaling and premature component failure. This paper presents the computational design of a zero-power-consumption system that combines thermoelectric-self-cooling technology and thermosyphon effect to dissipate the excess heat from a real solar-collector installation. Thermoelectric self-cooling is a novel thermoelectric application proven to enhance the heat dissipation of any hot spot without electricity consumption. The simplest design outperforms currently-used static and dynamic dissipaters for overheating protection in solar collectors, since it increases the global heat transfer coefficient of a static dissipater by 75 % and requires no electricity. Likewise, the final design presents a global heat transfer coefficient of 15.23 W/(m2K), 155 % higher than that provided by static dissipaters, forming a reliable, robust and autonomous system that stands out as a promising alternative to prevent the overheating of solar collectors.