García Lorente, José Antonio

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

García Lorente

First Name

José Antonio

person.page.departamento

Ingeniería

person.page.instituteName

InaMat2. Instituto de Investigación en Materiales Avanzados y Matemáticas

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 3 of 3
  • PublicationOpen Access
    A comparative study in the tribological behavior of DLC coatings deposited by HiPIMS technology with positive pulses
    (MDPI, 2020) García Lorente, José Antonio; Rivero Fuente, Pedro J.; Barba Areso, Eneko; Fernández, Iván; Santiago, José A.; Fuente, Gonzalo G.; Rodríguez Trías, Rafael; Ingeniaritza; Institute for Advanced Materials and Mathematics - INAMAT2; Ingeniería
    During the last few decades, diamond-like carbon (DLC) coatings were widely used for tribological applications, being an effective tool for improving the performance and the useful life of different machining tools. Despite its excellent properties, among which stand out a high hardness, a very low friction coefficient, and even an excellent wear resistance, one of the main drawbacks which limits its corresponding industrial applicability is the resultant adhesion in comparison with other commercially available deposition techniques. In this work, it is reported the tribological results of a scratch test, wear resistance, and nanoindentation of ta-C and WC:C DLC coatings deposited by means of a novel high-power impulse magnetron sputtering (HiPIMS) technology with 'positive pulses'. The coatings were deposited on 1.2379 tool steel which is of a high interest due to its great and wide industrial applicability. Finally, experimental results showed a considerable improvement in the tribological properties such as wear resistance and adhesion of both types of DLC coatings. In addition, it was also observed that the role of doping with W enables a significant enhancement on the adhesion for extremely high critical loads in the scratch tests.
  • PublicationOpen Access
    Comparative study of tribomechanical properties of HiPIMS with positive pulses DLC coatings on different tools steels
    (MDPI, 2021) Claver Alba, Adrián; Jiménez-Piqué, Emilio; Almandoz Sánchez, Eluxka; Fernández de Ara, Jonathan; Fernández, Iván; Santiago, José A.; Barba Areso, Eneko; García Lorente, José Antonio; Ingeniaritza; Institute for Advanced Materials and Mathematics - INAMAT2; Ingeniería
    Diamond-like carbon (DLC) coatings are very interesting due to their extraordinary properties; their excellent wear resistance, very low friction coefficient, great hardness, high elastic modulus or biocompatibility can be highlighted, as can their multifunctionality. Because of this, over recent decades they have been widely used in tribological applications, improving the performance and the useful life of machining tools in an effective way. However, these coatings have a disadvantage compared to other coatings deposited by commercially available techniques-their resultant adhesion is worse than that of other techniques and limits their industrial applications. In this work, tribological results of a scratch test, wear resistance and nanoindentation of tetrahedral amorphous carbon (ta-C) and tungsten carbide:carbon (WC:C) DLC coatings deposited by means of novel highpower impulse magnetron sputtering (HiPIMS) technology with positive pulses are reported. The coatings were deposited in three different tools steels: K360, vanadis 4 and vancron. These tools' steels are very interesting because of their great and wide industrial applicability. Experimental results showed excellent tribological properties, such as resistance to wear or adhesion, in the two types of DLC coatings.
  • PublicationOpen Access
    Corrosion and tribological performance of diamond-like carbon-coated ZK 60 magnesium alloy
    (MDPI, 2023) Claver Alba, Adrián; Fernández, Iván; Santiago, José A.; Díaz-Rodríguez, Pablo; Panizo-Laiz, Miguel; Esparza Gorráiz, Joseba; García Fuentes, Gonzalo; Zalakain Iriazabal, Iñaki; García Lorente, José Antonio; Institute for Advanced Materials and Mathematics - INAMAT2
    In this work, hydrogenated and hydrogen-free Diamond-Like Carbon (DLC) coatings were deposited into ZK60 magnesium alloy using the promising coating method High-Power Impulse Magnetron Sputtering (HiPIMS). CrC and WC were used as interlayers of the thin films, and their influence was studied. The structure and composition of the coatings were characterized using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and Raman spectroscopy. Tribological tests, scratch tests, and nanoindentation were performed to obtain information about the mechanical and tribological properties of the coatings. Finally, immersion and electrochemical tests were performed to evaluate the corrosion behavior of the samples. The results showed a homogeneous layer with improved wear resistance, toughness, and hardness in addition to good adhesion to the substrate of the ZK60 magnesium alloy. The hydrogenated DLC coating showed better results that the hydrogen-free thin layer, and relevant differences were observed depending on the interlayer. In this work, the improvement in the tribological and corrosive properties of Mg alloys was studied by using thin layers of DLC and different intermediate layers, achieving similar or even better wear and adhesion values than with thicker layers.