García Lorente, José Antonio
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
García Lorente
First Name
José Antonio
person.page.departamento
Ingeniería
person.page.instituteName
InaMat2. Instituto de Investigación en Materiales Avanzados y Matemáticas
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
15 results
Search Results
Now showing 1 - 10 of 15
Publication Open Access Adhesion enhancement on a duplex DLC HiPIMS positive pulse doating performed by active screen plasma nitriding pretreatment on 316L stainless steel substrate(Hindawi, 2022) Gómez Alonso, Íñigo; García Lorente, José Antonio; Santiago, José A.; Fernández, Iván; Braceras, Íñigo; Ingeniería; Ingeniaritza; Gobierno de Navarra / Nafarroako GobernuaDiamond-like carbon (DLC) coatings have been the object of research interest due to properties such as excellent wear resistance, low coefficient of friction, high hardness, high elastic modulus, and biocompatibility. Despite this, DLC has poor adhesion properties, which makes it challenging to use in industrial applications. The application of DLC using the high-power pulse magnetron sputtering (HiPIMS) technique with positive pulses has been studied. Seeking greater DLC coating adherence, the application of a nitriding pretreatment prior to the DLC coating has been studied to improve its adhesion to AISI316L stainless steel soft metal substrates, employing active screen plasma nitriding (ASPN). The influence of the different pretreatment temperatures to reach the maximum levels of adhesion has been analyzed. Scratch methods have been employed to assess adhesion. The elemental composition, morphology, and roughness of the samples have been studied, as well as the behavior of resistance to wear and friction. The results show an improvement in DCL adhesion. Critical loads (LC3) increase at higher pretreatment temperatures, from 48 N for the DLC to 82 N for the ASPN + DLC. Pretreatment has also been shown to be effective in maintaining excellent dry wear resistance properties and a low coefficient of friction.Publication Open Access Influence of friction coefficient on the performance of cold forming tools(MDPI, 2023) Barba Areso, Eneko; Salcedo Pérez, Daniel; Claver Alba, Adrián; Luri Irigoyen, Rodrigo; García Lorente, José Antonio; Ingeniería; IngeniaritzaThe automotive industry has undergone significant advancements and changes over time, resulting in the use of more complex parts in modern vehicles. As a consequence, the parts used in the manufacturing process are subject to higher stress levels, which reduce their service life. To mitigate this issue, surface treatments can be applied to improve the mechanical properties of the tools. In this study, we examined the impact of surface treatments on reducing tool stress during a cold forming process. The process involved reducing the thickness of a sheet from 6 mm to 2.5 mm, which generated high stresses in the tooling. We used finite element stress calculations to analyze the process and found that by reducing the friction coefficient to 0.1, tool stresses can be reduced by 20%, leading to an increase in tool life. Moreover, the press force and tool wear were also reduced by 18%. To validate the theoretical calculations, we performed field tests in a real manufacturing process.Publication Open Access Study and optimization of the punching process of steel using the Johnson-Cook damage model(MDPI, 2024) Claver Alba, Adrián; Hernández Acosta, Andrea; Barba Areso, Eneko; Fuertes Bonel, Juan Pablo; Torres Salcedo, Alexia; García Lorente, José Antonio; Luri Irigoyen, Rodrigo; Salcedo Pérez, Daniel; Ingeniería; Ingeniaritza; Institute for Advanced Materials and Mathematics - INAMAT2Sheet metal forming processes are widely used in applications such as those in the automotive or aerospace industries. Among them, punching is of great interest due to its high productivity and low operating cost. However, it is necessary to optimize these processes and adjust their parameters, such as clearance, shear force or tool geometry, to obtain the best finishes and minimize crack generation. Thus, the main objective of this research work is to optimize the punching process to achieve parts that do not require subsequent processes, such as deburring, by controlling the properties of the starting materials and with the help of tools such as design of experiments and simulations. In the present study, tensile tests were performed on three steels with different compositions and three sample geometries. The information obtained from these tests has allowed us to determine the parameters of the Johnson-Cook damage criteria. Moreover, punching was performed on real parts and compared with simulations to analyze the percentage of burnish surface. The results obtained show that the methodology used was correct and that it can be extrapolated to other types of die-cutting processes by reducing the percentage of surface fractures and predicting the appearance of cracks. Furthermore, it was observed that clearance has a greater influence than processing speed, while the minimum percentage of the burnish area was observed for the minimum values of clearance.Publication Open Access Biodegradable magnesium alloys for personalised temporary implants(MDPI, 2023) Hendea, Radu Emil; Raducanu, Doina; Claver Alba, Adrián; García Lorente, José Antonio; Cojocaru, Vasile Danut; Nocivin, Anna; Stanciu, Doina; Serban, Nicolae; Ivanescu, Steliana; Trisca-Rusu, Corneliu; Campian, Radu Septimiu; Institute for Advanced Materials and Mathematics - INAMAT2The objective of this experimental work was to examine and characterise the route for obtaining demonstrative temporary biodegradable personalised implants from the Mg alloy Mg10Zn-0.5Zr-0.8Ca (wt.%). This studied Mg alloy was obtained in its powder state using the mechanical alloying method, with shape and size characteristics suitable for ensuing 3D additive manufacturing using the SLM (selective laser melting) procedure. The SLM procedure was applied to various processing parameters. All obtained samples were characterised microstructurally (using XRD—Xray diffraction, and SEM—scanning electron microscopy); mechanically, by applying a compression test; and, finally, from a corrosion resistance viewpoint. Using the optimal test processing parameters, a few demonstrative temporary implants of small dimensions were made via the SLM method. Our conclusion is that mechanical alloying combined with SLM processing has good potential to manage 3D additive manufacturing for personalised temporary biodegradable implants of magnesium alloys. The compression tests show results closer to those of human bones compared to other potential metallic alloys. The applied corrosion test shows result comparable with that of the commercial magnesium alloy ZK60.Publication Open Access A comparative study in the tribological behavior of DLC coatings deposited by HiPIMS technology with positive pulses(MDPI, 2020) García Lorente, José Antonio; Rivero Fuente, Pedro J.; Barba Areso, Eneko; Fernández, Iván; Santiago, José A.; Fuente, Gonzalo G.; Rodríguez Trías, Rafael; Ingeniaritza; Institute for Advanced Materials and Mathematics - INAMAT2; IngenieríaDuring the last few decades, diamond-like carbon (DLC) coatings were widely used for tribological applications, being an effective tool for improving the performance and the useful life of different machining tools. Despite its excellent properties, among which stand out a high hardness, a very low friction coefficient, and even an excellent wear resistance, one of the main drawbacks which limits its corresponding industrial applicability is the resultant adhesion in comparison with other commercially available deposition techniques. In this work, it is reported the tribological results of a scratch test, wear resistance, and nanoindentation of ta-C and WC:C DLC coatings deposited by means of a novel high-power impulse magnetron sputtering (HiPIMS) technology with 'positive pulses'. The coatings were deposited on 1.2379 tool steel which is of a high interest due to its great and wide industrial applicability. Finally, experimental results showed a considerable improvement in the tribological properties such as wear resistance and adhesion of both types of DLC coatings. In addition, it was also observed that the role of doping with W enables a significant enhancement on the adhesion for extremely high critical loads in the scratch tests.Publication Open Access Duplex treatments prepared by HiPIMS and sol-gel on biodegradable ZK60 magnesium alloy for biomedical applications(Elsevier, 2025-09-01) Claver Alba, Adrián; Quintana, Iban; Fernández, Iván; Santiago, José A.; Díaz-Rodríguez, Pablo; Panizo-Laiz, Miguel; Zalakain Iriazabal, Iñaki; Urroz Unzueta, José Carlos; García Lorente, José Antonio; Ingeniería; Ingeniaritza; Institute for Advanced Materials and Mathematics - INAMAT2; Gobierno de Navarra / Nafarroako GobernuaThe utilization of magnesium-based biomaterials in biomedical applications has grown considerably in recent years due to their favourable biocompatibility, biodegradability, and mechanical properties that closely resemble those of bones. However, the use of Mg-based alloys in aggressive environments, such as human bodily fluids, is hindered by their susceptibility to rapid corrosion, which compromises their mechanical properties. This can lead to infections in the body due to uncontrolled corrosion. In this study, a novel approach was employed to enhance the corrosion resistance of biodegradable ZK60 magnesium alloy and achieve optimal surface properties that can potentially enhance its antibacterial performance, hardness, and toughness. This approach involved the application of duplex treatments consisting of TiN doped with Cu coatings deposited via high power impulse magnetron sputtering (HiPIMS) followed by a Sol-gel top layer. The study systematically investigated the surface properties (wettability, roughness, and morphology), hardness, toughness and adhesion of the coatings to the substrate. To assess the corrosion resistance, mass change and hydrogen evolution of the samples, they were immersed in Hanks Balanced Salts Solution. Electrochemical tests were conducted to estimate the corrosion behavior of the samples. The in-vitro corrosion tests results demonstrated that the duplex treatments enhanced the corrosion resistance of the uncoated magnesium alloy samples. The duplex treatments exhibited suitable properties, including high corrosion resistance, hardness, toughness and adequate values of wettability and porosity-roughness. Therefore, they can be considered a promising option for use in biodegradable magnesium implants.Publication Open Access Recycling bovine ear tags for phase change material encapsulation via electrospinning(Elsevier, 2025-10-01) Alfonso de Miguel, Iker; Calvo-Correas, Tamara; Eceiza, Arantxa; Claver Alba, Adrián; Torresi, Stefano; García Lorente, José Antonio; Zalakain Iriazabal, Iñaki; Ingeniería; Ingeniaritza; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaIn this study, thermoplastic polyurethane (TPU) from waste bovine ear tags has been processed and recycled as shell material to encapsulate phase change materials (PCMs), enabling the fabrication of thermoregulating core-shell nanofibers via coaxial electrospinning. Notably, this process was achieved in few steps and without the need for heating equipment to melt the injected materials, enhancing its simplicity. Two PCMs were selected based on their melting points; octadecane (OCTA) near room temperature and eicosane (EICO) near body temperature. Composite fibers were prepared at different core solution concentrations (10, 20, 40 and 80 % w/v), with the highest encapsulation efficiency and thermal properties obtained for samples with 80 % (w/v). TPU/PCM electrospun nanofibers were observed by scanning electron microscopy (SEM) with average diameters between 400 and 700 nm. The Fourier transform infrared spectroscopy (FTIR) suggested no further chemical reactions during the fabrication process. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) demonstrated good thermal stability, with latent heats of 62.9 2 J/g and 81.4 J/g for TPU/OCTA80 and TPU/EICO80 membranes, respectively. Thermal cycling tests were conducted for 150 cycles, showing a 5 % enthalpy reduction in TPU/OCTA80 due to crystalline phase degradation, while TPU/EICO80 exhibited a 2 % increase, likely due to PCM restructuring; however, long-term trends suggest a potential decline. This simple, cost-effective and environmentally friendly fabrication process highlights the potential of upcycling TPU waste and offers a scalable approach for developing TPU/PCM membranes with promising applications in textile thermal management systems.Publication Open Access Improved adhesion and tribological properties of altin-tisin coatings deposited by dcms and hipims on nitrided tool steels(MDPI, 2021) Claver Alba, Adrián; Randulfe Ceballos, Jesús José; Fernández de Ara, Jonathan; Almandoz Sánchez, Eluxka; Montalá, Francesc; Colominas, Carles; Cot, Víctor; García Lorente, José Antonio; Ingeniaritza; Institute for Advanced Materials and Mathematics - INAMAT2; IngenieríaHard coatings, such as AlTiN-TiSiN, deposited by Physical Vapor Deposition (PVD) techniques are widely used in industrial applications to protect and increase the lifetime of industrial components, such as cutting tools, dies, and forming tools. Despite their great properties, such as high hardness and wear and oxidation resistance, they are limited in cases of severe conditions due to the poor adhesion between the coating and the substrate. Duplex treatments have commonly been used to improve the adhesive properties of PVD coatings, especially those of the cathodic arc evaporation type. The purpose of this study is to achieve coatings with the good properties of the Magnetron Sputtering processes but with higher adhesion than that achieved with these techniques, thus achieving coatings that can be used under the most severe conditions. In this work, an AlTiN-TiSiN coating was deposited by a combination of DC Magnetron Sputtering (DCMS) and High-Power Impulse Magnetron Sputtering (HiPIMS) after a gas nitriding pretreatment on 1.2379 and Vanadis 4 tool steels. Mechanical (ultra-microhardness and scratch tests) and tribological tests were carried out to study the improvement in the properties of the coating. Duplex-treated samples showed improved adhesion between the coating and the substrate, with second critical load (Lc2) values greater than 100 N. Furthermore, they showed great toughness and wear resistance. These results show that this type of coating technique could be used in the most extreme applications and that they can compete with other techniques and coatings that to date they have not been able to compete with.Publication Open Access Corrosion and tribological performance of diamond-like carbon-coated ZK 60 magnesium alloy(MDPI, 2023) Claver Alba, Adrián; Fernández, Iván; Santiago, José A.; Díaz-Rodríguez, Pablo; Panizo-Laiz, Miguel; Esparza Gorráiz, Joseba; García Fuentes, Gonzalo; Zalakain Iriazabal, Iñaki; García Lorente, José Antonio; Institute for Advanced Materials and Mathematics - INAMAT2In this work, hydrogenated and hydrogen-free Diamond-Like Carbon (DLC) coatings were deposited into ZK60 magnesium alloy using the promising coating method High-Power Impulse Magnetron Sputtering (HiPIMS). CrC and WC were used as interlayers of the thin films, and their influence was studied. The structure and composition of the coatings were characterized using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and Raman spectroscopy. Tribological tests, scratch tests, and nanoindentation were performed to obtain information about the mechanical and tribological properties of the coatings. Finally, immersion and electrochemical tests were performed to evaluate the corrosion behavior of the samples. The results showed a homogeneous layer with improved wear resistance, toughness, and hardness in addition to good adhesion to the substrate of the ZK60 magnesium alloy. The hydrogenated DLC coating showed better results that the hydrogen-free thin layer, and relevant differences were observed depending on the interlayer. In this work, the improvement in the tribological and corrosive properties of Mg alloys was studied by using thin layers of DLC and different intermediate layers, achieving similar or even better wear and adhesion values than with thicker layers.Publication Open Access Antibacterial functionalization of PVD coatings on ceramics(MDPI, 2018) Osés Martínez de Zúñiga, Javier; García Fuentes, Gonzalo; García Lorente, José Antonio; Rodríguez Trías, Rafael; Ingeniaritza; Institute for Advanced Materials and Mathematics - INAMAT2; IngenieríaThe application of surface treatments that incorporate silver or copper as antibacterial elements has become a common practice for a wide variety of medical devices and materials because of their effective activity against nosocomial infections. Ceramic tiles are choice materials for cladding the floors and walls of operation rooms and other hospital spaces. This study is focused on the deposition of biocide physical vapor deposition (PVD) coatings on glazed ceramic tiles. The objective was to provide antibacterial activity to the surfaces without worsening their mechanical properties. Silver and copper-doped chromium nitride (CrN) and titanium nitride (TiN) coatings were deposited on samples of tiles. A complete characterization was carried out in order to determine the composition and structure of the coatings, as well as their topographical and mechanical properties. The distribution of Ag and Cu within the coating was analyzed using glow discharge optical emission spectrometry (GD-OES) and field emission scanning electron microscope (FE-SEM). Roughness, microhardness, and scratch resistance were measured for all of the combinations of coatings and dopants, as well as their wettability. Finally, tests of antibacterial efficacy against Staphylococcus aureus and Escherichia coli were carried out, showing that all of the doped coatings had pronounced biocide activity.