Person:
Royo Díaz, José Bernardo

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Royo Díaz

First Name

José Bernardo

person.page.departamento

Agronomía, Biotecnología y Alimentación

person.page.instituteName

ORCID

0000-0003-1146-4989

person.page.upna

32

Name

Search Results

Now showing 1 - 2 of 2
  • PublicationOpen Access
    Sampling stratification using aerial imagery to estimate fruit load in peach tree orchards
    (MDPI, 2018) Miranda Jiménez, Carlos; Santesteban García, Gonzaga; Urrestarazu Vidart, Jorge; Loidi Erviti, Maite; Royo Díaz, José Bernardo; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta Elikadura
    A quick and accurate sampling method for determining yield in peach orchards could lead to better crop management decisions, more accurate insurance claim adjustment, and reduced expenses for the insurance industry. Given that sample size depends exclusively on the variability of the trees on the orchard, it is necessary to have a quick and objective way of assessing this variability. The aim of this study was to use remote sensing to detect the spatial variability within peach orchards and classify trees into homogeneous zones that constitute sampling strata to decrease sample size. Five mature peach orchards with different degrees of spatial variability were used. A regular grid of trees was established on each orchard, their trunk cross-sectional area (TCSA) was measured, and yield was measured as number of fruits/tree on the central tree of each one of them. Red Vegetation Index (RVI) was calculated from aerial images with 0.25 m pixel -1 resolution, and used, either alone or in combination with TCSA, to delineate sampling strata using cluster fuzzy k-means. Completely randomized (CRS) and stratified samplings were compared through 10,000 iterations, and the Minimum Sample Size required to obtain estimates of actual production for three quality levels of sampling was calculated in each case. The images allowed accurate determination of the number of trees, allowing a proper application of completely randomized sampling designs. Tree size and the canopy density estimated by means of multispectral indices are complementary parameters suitable for orchard stratification, decreasing the sample size required to determine fruit count up to 20–35% compared to completely randomized samples.
  • PublicationOpen Access
    Severe trimming and enhanced competition of laterals as a tool to delay ripening in Tempranillo vineyards under semiarid conditions
    (Université de Bordeaux, 2017) Santesteban García, Gonzaga; Miranda Jiménez, Carlos; Urrestarazu Vidart, Jorge; Loidi Erviti, Maite; Royo Díaz, José Bernardo; Producción Agraria; Nekazaritza Ekoizpena; Gobierno de Navarra / Nafarroako Gobernua
    Aim: An advance in grapevine phenological stages (including ripening) is occurring worldwide due to global warming and, in the hottest seasons, already results in a lack of synchrony between sugar and phenolic ripeness, leading to unbalanced wines. In order to cope with this fact, a general effort is being made by researchers and growers aiming at delaying ripening through cultural practices, particularly under warm growing conditions, where these effects are more deleterious. The aim of this work is to evaluate to which extent severe trimming and enhanced competition of laterals can delay ripening in Tempranillo vineyards under semiarid conditions. Methods and results: The experiment took place during two consecutive seasons in Traibuenas (Navarra, Spain) in a cv. ‘Tempranillo’ vineyard trained to a vertical shoot positioned (VSP) spur-pruned bilateral cordon. Severe mechanical pruning was performed ca. 3 weeks after fruit-set in order to reduce leaf-to-fruit ratio, and in the trimmed plants, three irrigation doses were applied until harvest aiming at enhancing lateral growth, hypothesized to compete with ripening. All measurements were performed in six 10-vine replicates per treatment. Trimming significantly reduced leaf area and yield, resulting in higher water availability in trimmed plants. The whole ripening process was delayed by trimming: mid-veraison was delayed by about 5 days, and the delay in sugar accumulation and acid degradation was longer, differences being more marked in malic than in tartaric acid concentration. The use of increased irrigation levels compensated the losses in yield caused by trimming, enhanced laterals’ growth and implied an additional delay in ripening. Conclusion: trimming and increased irrigation had an additive effect in terms of delaying ripening, and they can be used jointly when that delay is needed. Significance and impact of the study: this study proves the potentiality of the joint use of trimming and increased irrigation to delay ripening, although it is necessary to analyze the implications the obtained delay has on other quality aspects. The lower anthocyanin and phenolic values observed in trimmed vines were not solely due to delayed ripening, as lower values were observed even when data were compared for a given total soluble solid content.