Person:
Sevilla Moróder, Joaquín

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Sevilla Moróder

First Name

Joaquín

person.page.departamento

Ingeniería Eléctrica, Electrónica y de Comunicación

person.page.instituteName

ISC. Institute of Smart Cities

ORCID

0000-0002-9052-0805

person.page.upna

1624

Name

Search Results

Now showing 1 - 4 of 4
  • PublicationOpen Access
    Erratum: “Transmission spectra changes produced by decreasing compactness of opal like structures” J. Appl. Phys. 105, 024910 (2009)
    (AIP Publishing, 2011) Andueza Unanua, Ángel María; Echeverría, R.; Morales Zimmermann, Paola Andrea; Sevilla Moróder, Joaquín; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    Performing a systematic review of our experimental data, we have realized that we introduced a significant mistake in our abovementioned publication. Figure 3 did not correspond to the situation described, and should be changed by one here included. The corrected data do not invalidate the conclusions presented in the original publication, even more they are reinforced.
  • PublicationOpen Access
    Transmission spectra changes produced by decreasing compactness of opal-like structures
    (AIP Publishing, 2009) Andueza Unanua, Ángel María; Echeverría, R.; Morales Zimmermann, Paola Andrea; Sevilla Moróder, Joaquín; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    Artificial opal-like structures based on spheres and colloidal particles have been fabricated in a controlled way, presenting optical band-gap properties in the optical frequency range. Nonclose packed artificial opals have also been fabricated and studied recently. In order to gain a better understanding of these phenomena, we have studied macroscopic models of nonclose packed fcc lattices using glass spheres (ε = 7) of 8 mm diameter, and measuring in the microwave region from 10 to 30 GHz. The results have shown a Bragg resonance tunable with filling factor of the opal, and a strong rejected band similar, also present in close packed samples, much less affected by compactness. The relation of this high order band with spheres single layer behavior is also discussed
  • PublicationOpen Access
    Strong angular dependence of resonant states in 2D dielectric cylinder rings
    (AIP Publishing, 2018) Andueza Unanua, Ángel María; Pérez Conde, Jesús; Sevilla Moróder, Joaquín; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Fisika; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Física
    We investigate collective resonators made of dielectric cylinders assembled as two-dimensional regular octagons and decagons. These structures exhibit collective resonance states that change their intensity with the incident radiation angle. While most parts of the spectra present small or even null variation, one of these resonances presents high-sensitivity to the incidence angle. This strong variation is well characterized in terms of the electric field intensity distribution of a resonant state where all the cylinders show the lowest order Mie resonance and the neighbors alternate their polarities. The collective state is optimally excited when radiation impinges on a vertex of the polygonal arrangement of cylinders, while the response decreases to its minimum when the incident field hits an edge (two cylinders at the same time). The resonant state and its high dependence on the excitation incidence angle have been found in both octagonal and decagonal configurations for different dielectric permittivity values. In addition, the scalability of Maxwell equations warranties the same behavior if the whole system is downscaled to terahertz or optic frequencies. The study was performed by finite integration time domain calculations of scattering and transmission for different incidence angles. Experimental measures in the microwave range were taken from photonic molecule prototypes made of centimeter-scale glass cylinders (ϵ = 4.5). We find an overall excellent agreement between measurements and simulations. We propose that photonic molecules made of polygonal rings of dielectric cylinders are an ideal structure to build angle sensors using the strongly varying state that they present.
  • PublicationOpen Access
    Geometry influence on the transmission spectra of dielectric single layers of spheres with different compactness
    (AIP Publishing, 2010) Andueza Unanua, Ángel María; Echeverría, R.; Morales Zimmermann, Paola Andrea; Sevilla Moróder, Joaquín; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    The transmission of spectra of different dielectric spheres single layer arrangements has been measured. High dielectric permittivity ε =7 spheres of several millimeters of diameter were used to build the samples whose transmission was measured in the microwave range. The behavior of lattices arranged in square and triangular geometries have been compared in a number of different compactness cases. The same patterns measured have also been calculated by finite-difference time-domain FDTD method. Spectra from different geometrical arrangements of the same compactness measured with the same filling fraction value are very similar in some cases. Based on the level of similarity we propose three compactness regions. The high compactness region, where the structure effect is important, presents spectra clearly different for the two geometries. In a medium compactness region spectra are almost identical, suggesting a dominant effect of single sphere effects. Finally, in the low compactness region, the spectra from the two geometrical configurations diverge again as the Bragg diffraction values are approached.