Person: Sevilla Moróder, Joaquín
Loading...
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Sevilla Moróder
First Name
Joaquín
person.page.departamento
Ingeniería Eléctrica, Electrónica y de Comunicación
person.page.instituteName
ISC. Institute of Smart Cities
ORCID
0000-0002-9052-0805
person.page.upna
1624
Name
3 results
Search Results
Now showing 1 - 3 of 3
Publication Open Access Strong angular dependence of resonant states in 2D dielectric cylinder rings(AIP Publishing, 2018) Andueza Unanua, Ángel María; Pérez Conde, Jesús; Sevilla Moróder, Joaquín; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Fisika; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; FísicaWe investigate collective resonators made of dielectric cylinders assembled as two-dimensional regular octagons and decagons. These structures exhibit collective resonance states that change their intensity with the incident radiation angle. While most parts of the spectra present small or even null variation, one of these resonances presents high-sensitivity to the incidence angle. This strong variation is well characterized in terms of the electric field intensity distribution of a resonant state where all the cylinders show the lowest order Mie resonance and the neighbors alternate their polarities. The collective state is optimally excited when radiation impinges on a vertex of the polygonal arrangement of cylinders, while the response decreases to its minimum when the incident field hits an edge (two cylinders at the same time). The resonant state and its high dependence on the excitation incidence angle have been found in both octagonal and decagonal configurations for different dielectric permittivity values. In addition, the scalability of Maxwell equations warranties the same behavior if the whole system is downscaled to terahertz or optic frequencies. The study was performed by finite integration time domain calculations of scattering and transmission for different incidence angles. Experimental measures in the microwave range were taken from photonic molecule prototypes made of centimeter-scale glass cylinders (ϵ = 4.5). We find an overall excellent agreement between measurements and simulations. We propose that photonic molecules made of polygonal rings of dielectric cylinders are an ideal structure to build angle sensors using the strongly varying state that they present.Publication Open Access Shear based gap control in 2D photonic quasicrystals of dielectric cylinders(Optica, 2021) Andueza Unanua, Ángel María; Sevilla Moróder, Joaquín; Pérez Conde, Jesús; Wang, Kang; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Zientziak; Institute of Smart Cities - ISC; Institute for Advanced Materials and Mathematics - INAMAT2; Ingeniería Eléctrica, Electrónica y de Comunicación; Ciencias2D dielectric photonic quasicrystals can be designed to show isotropic band gaps. In this work we study a quasiperiodic lattice made of silicon dielectric cylinders (ε = 12) arranged as periodic unit cell based on a decagonal approximant of a quasiperiodic Penrose lattice. We analyze the bulk properties of the resulting lattice as well as the bright states excited in the gap, which correspond to localized resonances of the electromagnetic field in specific cylinder clusters of the lattice. Then we introduce a controlled shear deformation γ which breaks the decagonal symmetry and evaluate the width reduction of the gap together with the evolution of the resonances, for all shear values compatible with physical constraints (cylinder contact). The gap width reduction reaches 18.5% while different states change their frequency in several ways. Realistic analysis of the actual transmission of the electromagnetic radiation, often missing in the literature, has been performed for a finite 'slice' of the proposed quasicrystals structure. Two calculation procedures based on MIT Photonic Bands (MPB) and Finite Integration Technique (FIT) are used for the bulk and the finite structures showing an excellent agreement between them.Publication Open Access Strain sensing based on resonant states in 2D dielectric photonic quasicrystals(Optica, 2021) Andueza Unanua, Ángel María; Pérez Conde, Jesús; Sevilla Moróder, Joaquín; Zientziak; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Institute for Advanced Materials and Mathematics - INAMAT2; Ciencias; Ingeniería Eléctrica, Electrónica y de ComunicaciónThis paper reports the numerical and experimental study of the strain sensing effect of bidimensional quasiperiodic structures made with dielectric cylinders. Structures of around 100 cylinders arranged following a Penrose quasiperiodic disposition were simulated, built and measured, in different states of deformation. The selected quasiperiodic structure contains a symmetric decagonal ring resonator that shows two states in its photonic band gap. The frequency of these states varies linearly in opposite directions as the structure is axially deformed, becoming an interesting sensing principle that can be exploited to build optical strain gauges. As a proof of concept, centimeter-scale glass cylinder (εr=4.5) structures were fabricated and their transmission spectra were measured in the microwave range. The same structures were simulated using finite integration time domain showing a good agreement with the measurements. The sensitivity of the prototype built was 12.4 kHz/µε, very linear in a wide range. Therefore, we conclude that the states in the gap of the resonator rings of 2D quasicrystals can find an interesting application in optical strain gauge construction.