Person:
Sevilla Moróder, Joaquín

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Sevilla Moróder

First Name

Joaquín

person.page.departamento

Ingeniería Eléctrica, Electrónica y de Comunicación

person.page.instituteName

ISC. Institute of Smart Cities

ORCID

0000-0002-9052-0805

person.page.upna

1624

Name

Search Results

Now showing 1 - 2 of 2
  • PublicationOpen Access
    Combining radiative cooling and light trapping strategies for improved performance of PERC bifacial silicon solar cells
    (Elsevier, 2023) Urdiroz Urricelqui, Unai; Itoiz Goñi, Iñigo; Sevilla Moróder, Joaquín; Andueza Unanua, Ángel María; Ingeniería; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute for Advanced Materials and Mathematics - INAMAT2; Institute of Smart Cities - ISC; Ingeniaritza; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    This work investigates the impact of combining light trapping and radiative cooling on bifacial solar panels. While several techniques have been proposed to enhance the efficiency of solar panels, their combination can lead to suboptimal results. By numerically evaluating the light absorption and thermal balance of different panel configurations, we found that each side of the bifacial solar cell can be textured independently with a cross-effect of less than 4%. However, our results also indicate that improving visible light trapping can increase infrared absorption, leading to a heating effect that may offset the benefits of radiative cooling. These findings highlight the importance of balancing the factors that influence solar panel efficiency and provide quantitative insights that guide the development of more effective solar energy systems.
  • PublicationOpen Access
    Enhanced thermal performance of photovoltaic panels based on glass surface texturization
    (Elsevier, 2021) Andueza Unanua, Ángel María; Pinto Fuste, Cristina Leyre; Navajas Hernández, David; Sevilla Moróder, Joaquín; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Gobierno de Navarra / Nafarroako Gobernua
    Photovoltaic module temperature is a detrimental parameter influencing the energy yield and the durability of photovoltaic systems. Among the passive strategies to reduce the operating temperature of solar cells, radiative cooling is receiving a lot of attention, as an effective mean to passively evacuate heat in systems. The existence of a wavelength window of atmospheric transparency (8–13 μm) allows sending heat to outer space. The functionalization of the glass that could help to limit or reduce the temperature of the solar cells is an interesting approach. In this paper, we explore the effect of glass surface patterns in its radiation performance, so that the radiation cooling effect could be enhanced. The study is based on numerical simulations, calculating the spectral emissivity of different geometrical configurations of structures on top of the glass. Different geometrical figures of micrometers in size have been tested to find an optimal emissivity response in the transparent atmospheric window. Periodical patterns based on cones, pyramids, or moth-eye shapes result in emissivity responses close to one along thermal wavelengths (8–25 μm) which increases the emitted power of the glass. However, when assessing the cooling power under sunlight, the evaluation wavelength band has to be expanded (0.3–25 μm). Here, we found that not all geometrical figures are effective for radiative cooling. Surfaces textured by holes and pyramids show a substantial cooling effect, providing an increase in cooling power over the flat glass ranging from 40 W/m2 to 110 W/m2 depending on the temperature of the solar devices.