Sawik, Bartosz

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Sawik

First Name

Bartosz

person.page.departamento

Estadística, Informática y Matemáticas

person.page.instituteName

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 3 of 3
  • PublicationOpen Access
    Integrating simulation and optimization: a case study in Pamplona for self-collection delivery points network design
    (Cal-Tek, 2023) Izco Berastegui, Irene; Serrano Hernández, Adrián; Sawik, Bartosz; Faulín Fajardo, Javier; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, PJUPNA26-2022
    The disruptions experienced by the processes in the last mile delivery during the SARS-CoV-2 pandemic raised the dilemma of up-to-date last mile approaches for Urban Logistics (UL) issues. Self-Collection Delivery Systems (SCDS) have been proved to be an improvement for all the players of the SC, providing flexibility of time-windows and reducing overall mileage, delivery time and, consequently, gas emissions. Differing from previous works involving hybrid modeling for automated parcel lockers (APL) network design, this paper brings a System Dynamics Simulation Model (SDSM) to forecast online shopping demand in the Spanish city of Pamplona. A bi-criteria Facility Location Problem (FLP) is solved by means of an e-constraint method, where e is defined as the level of coverage of the total demand. The experiment run considers 90% of demand coverage, in order to obtain the most complex network possible. The simulation and demand forecast was carried out using Anylogic simulation software and the optimization procedure makes use of the Java-based CPLEX API solver.
  • PublicationOpen Access
    Optimizing last-mile delivery: a multi-criteria approach with automated smart lockers, capillary distribution and crowdshipping
    (MDPI, 2024) Sawik, Bartosz; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika
    Background: This publication presents a review, multiple criteria optimization models, and a practical example pertaining to the integration of automated smart locker systems, capillary distribution networks, crowdshipping, last-mile delivery and supply chain management. This publication addresses challenges in logistics and transportation, aiming to enhance efficiency, reduce costs and improve customer satisfaction. This study integrates automated smart locker systems, capillary distribution networks, crowdshipping, last-mile delivery and supply chain management. Methods: A review of the existing literature synthesizes key concepts, such as facility location problems, vehicle routing problems and the mathematical programming approach, to optimize supply chain operations. Conceptual optimization models are formulated to solve the complex decisionmaking process involved in last-mile delivery, considering multiple objectives, including cost minimization, delivery time optimization, service level minimization, capacity optimization, vehicle minimization and resource utilization. Results: The multiple criteria approaches combine the vehicle routing problem and facility location problem, demonstrating the practical applicability of the proposed methodology in a real-world case study within a logistics company. Conclusions: The execution of multi-criteria models optimizes automated smart locker deployment, capillary distribution design, crowdshipping and last-mile delivery strategies, showcasing its effectiveness in the logistics sector.
  • PublicationOpen Access
    Multi-criteria simulation-optimization analysis of usage of automated parcel lockers: a practical approach
    (MDPI, 2022) Sawik, Bartosz; Serrano Hernández, Adrián; Muro, Álvaro; Faulín Fajardo, Javier; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    The rapid growth of electronic commerce is having an impact on the way urban logistics are organized. In metropolitan settings, the last-mile delivery problem, i.e., the problem regarding the final stage of delivering a shipment to a consumer, is a major concern due to its inefficiency. The development of a convenient automated parcel lockers (APLs) network improves last-mile distribution by reducing the number of vehicles, the distances driven, and the number of delivery stops. Using automated parcel lockers, the last-mile issue could be overcome for the environment’s benefit. This study aimed to define and validate an APL network containing hundreds of APLs with the use of an example made up of real case study data from the city of Pozna ´n in Poland. The goal of this research was to use mathematical programming for optimization and simulation to tackle the facility location problem for automated parcel lockers through a practical approach. Multi-criteria simulation-optimization analysis was used to assess the data. In fact, the simulation was carried out using Anylogic software and the optimization with the use of the Java programming language and CPLEX solver. Three years were simulated, allowing for comparable results for each year in terms of expenses, e-shoppers, APL users, and demand evolution, as well as achieving the city’s optimal locker usage. Finally, encouraging conclusions were obtained, such as the relationship between the demand and the number of lockers, along with the model’s limitations.