Person: Berrueta Irigoyen, Eduardo
Loading...
Email Address
person.page.identifierURI
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Berrueta Irigoyen
First Name
Eduardo
person.page.departamento
Ingeniería Eléctrica, Electrónica y de Comunicación
person.page.instituteName
ORCID
0000-0002-0076-4479
person.page.upna
811478
Name
2 results
Search Results
Now showing 1 - 2 of 2
Publication Open Access Crypto-ransomware detection using machine learning models in file-sharing network scenarios with encrypted traffic(Elsevier, 2022) Berrueta Irigoyen, Eduardo; Morató Osés, Daniel; Magaña Lizarrondo, Eduardo; Izal Azcárate, Mikel; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaRansomware is considered as a significant threat for home users and enterprises. In corporate scenarios, users’ computers usually store only system and program files, while all the documents are accessed from shared servers. In these scenarios, one crypto-ransomware infected host is capable of locking the access to all shared files it has access to, which can be the whole set of files from a workgroup of users. We propose a tool to detect and block crypto-ransomware activity based on file-sharing traffic analysis. The tool monitors the traffic exchanged between the clients and the file servers and using machine learning techniques it searches for patterns in the traffic that betray ransomware actions while reading and overwriting files. This is the first proposal designed to work not only for clear text protocols but also for encrypted file-sharing protocols. We extract features from network traffic that describe the activity opening, closing, and modifying files. The features allow the differentiation between ransomware activity and high activity from benign applications. We train and test the detection model using a large set of more than 70 ransomware binaries from 33 different strains and more than 2,400 h of ‘not infected’ traffic from real users. The results reveal that the proposed tool can detect all ransomware binaries described, including those not used in the training phase. This paper provides a validation of the algorithm by studying the false positive rate and the amount of information from user files that the ransomware could encrypt before being detectedPublication Open Access Open repository for the evaluation of ransomware detection tools(IEEE, 2020) Berrueta Irigoyen, Eduardo; Morató Osés, Daniel; Magaña Lizarrondo, Eduardo; Izal Azcárate, Mikel; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de ComunicaciónCrypto-ransomware is a type of malware that encrypts user files, deletes the original data, and asks for ransom to recover the hijacked documents. Several articles have presented detection techniques for this type of malware; these techniques are applied before the ransomware encrypts files or during its action in an infected host. The evaluation of these proposals has always been accomplished using sets of ransomware samples that are prepared locally for the research article, without making the data available. Different studies use different sets of samples and different evaluation metrics, resulting in insufficient comparability. In this paper, we describe a public data repository containing the file access operations of more than 70 ransomware samples during the encryption of a large network shared directory. These data have already been used successfully in the evaluation of a network-based ransomware detection algorithm. Now, we are making these data available to the community and describing their details, how they were captured, and how they can be used in the evaluation and comparison of the results of most ransomware detection techniques.