Picallo Guembe, Imanol

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Picallo Guembe

First Name

Imanol

person.page.departamento

Ingeniería Eléctrica, Electrónica y de Comunicación

person.page.instituteName

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 10 of 11
  • PublicationOpen Access
    Radio wave propagation and WSN deployment in complex utility tunnel environments
    (MDPI, 2020) Celaya Echarri, Mikel; Azpilicueta Fernández de las Heras, Leyre; López Iturri, Peio; Picallo Guembe, Imanol; Aguirre Gallego, Erik; Astrain Escola, José Javier; Villadangos Alonso, Jesús; Falcone Lanas, Francisco; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Matematika eta Informatika Ingeniaritza; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniería Matemática e Informática
    The significant growth of wireless communications systems in the last years has led to the adoption of a wide range of applications not only for the general public but, also, including utilities and administrative authorities. In this context, the notable expansion of new services for smart cities requires, in some specific cases, the construction of underground tunnels in order to enable the maintenance and operation works of utilities, as well as to reduce the visual impact within the city center. One of the main challenges is that, inherently, underground service tunnels lack coverage from exterior wireless communication systems, which can be potentially dangerous for maintenance personnel working within the tunnels. Accordingly, wireless coverage should be deployed within the underground installation in order to guarantee real-time connectivity for safety maintenance, remote surveillance or monitoring operations. In this work, wireless channel characterization for complex urban tunnel environments was analyzed based on the assessment of LoRaWAN and ZigBee technologies operating at 868 MHz. For that purpose, a real urban utility tunnel was modeled and simulated by means of an in-house three-dimensional ray-launching (3D-RL) code. The utility tunnel scenario is a complex and singular environment in terms of radio wave propagation due to the limited dimensions and metallic elements within it, such as service trays, user pathways or handrails, which were considered in the simulations. The simulated 3D-RL algorithm was calibrated and verified with experimental measurements, after which, the simulation and measurement results showed good agreement. Besides, a complete wireless sensor network (WSN) deployment within the tunnels was presented, providing remote cloud data access applications and services, allowing infrastructure security and safety work conditions. The obtained results provided an adequate radio planning approach for the deployment of wireless systems in complex urban utility scenarios, with optimal coverage and enhanced quality of service.
  • PublicationOpen Access
    Development of a cognitive IoT-enabled Smart Campus
    (IEEE, 2024-08-23) Picallo Guembe, Imanol; Klaina, Hicham; López Iturri, Peio; Azpilicueta Fernández de las Heras, Leyre; Celaya Echarri, Mikel; Astrain Escola, José Javier; Villadangos Alonso, Jesús; Falcone Lanas, Francisco; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Ciencias; Zientziak; Institute of Smart Cities - ISC
    The evolution from Smart to Cognitive Cities takes advantage, among others, of advanced communication technologies in order to increase interactivity levels. In this work, an analysis of wireless connectivity within the framework of a Smart Campus pilot at the Public University of Navarra in Spain is presented. By means of in-house implemented hybrid deterministic code, multiple wireless connectivity conditions with different operating frequencies are presented. The use of these tools provides accurate coverage/capacity analysis of large, complex scenarios, aiding in the design of network devices as well as overall network topology in order to optimize overall performance.
  • PublicationOpen Access
    Intelligent SDN-based multi-protocol selector for IoT-enabled NMT networks
    (IEEE, 2021) Al-Rahamneh, Anas; Astrain Escola, José Javier; López Iturri, Peio; Picallo Guembe, Imanol; Falcone Lanas, Francisco; Ingeniería Eléctrica, Electrónica y de Comunicación; Estadística, Informática y Matemáticas; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Estatistika, Informatika eta Matematika
    The popularity of the Internet of Things is increasing and it is being used in many commercial sectors, using customized technologies for specific environments. Applications and protocols, and the unique requirements of each environment, pose a significant challenge for IoT applications, necessitating communication and message exchange support. This paper aims to propose an intelligent SDN-Based multi-protocol selector for IoT-enabled NMT (NonMotorized Transportation) networks. The main goal of this work is to give the mobile nodes within IoT-enabled NMT networks the flexibility to choose the appropriate wireless communication protocol from several protocols they have to transmit information according to criteria, including battery life, data size and priority of the packet, to pass the most important data first.
  • PublicationOpen Access
    Enabling anything to anything connectivity within urban environments towards cognitive frameworks
    (IEEE, 2024-08-23) Picallo Guembe, Imanol; Klaina, Hicham; López Iturri, Peio; Azpilicueta Fernández de las Heras, Leyre; Celaya Echarri, Mikel; Astrain Escola, José Javier; Villadangos Alonso, Jesús; Falcone Lanas, Francisco; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Ciencias; Zientziak; Institute of Smart Cities - ISC
    The evolution from Smart Cities towards Cognitive Cities is enabled, among others, by the use of flexible and adaptive communication systems, capable of providing high levels of interactivity among multiple systems and users. In this work, wireless connectivity in full volumetric scale is analyzed, in order to provide wireless links between any device/user within the scenario, spanning to different applications from vehicular connectivity at different levels or infrastructure related communications, among others.
  • PublicationOpen Access
    Patient tracking in a multi-building, tunnel-connected hospital complex
    (IEEE, 2020) Trigo Vilaseca, Jesús Daniel; Klaina, Hicham; Picallo Guembe, Imanol; López Iturri, Peio; Astrain Escola, José Javier; Falcone Lanas, Francisco; Serrano Arriezu, Luis Javier; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, PJUPNA29
    Patients admitted to Intensive Care Units (ICU) are transported from and to other units. Knowing their location is strategic for a sound planning of intra-hospital transports as well as resources management. This is even more crucial in big hospital complexes, comprised of several buildings often connected through tunnels. In this work, a patient tracking application in a multi-building, tunnel-connected hospital complex (the Hospital Complex of Navarre) is presented. The system leverages Internet of Medical Things (IoMT) communication technologies, such as Long Range Wide-Area Network (LoRaWAN) and Near Field Communication (NFC). The locations of the LoRaWAN nodes were selected based on several factors, including the situation of the tunnels, buildings services and medical equipment and a literature review on intra-hospital ICU patients' trips. The possible locations of the LoRaWAN gateways were selected based on 3D Ray Launching Simulations, in order to obtain accurate characterization. Once the locations were set, a LoRaWAN radio coverage studio was performed. The main conclusion drawn is that just one LoRaWAN gateway would be enough to cover all overground LoRaWAN nodes deployed. A second one would be required for underground coverage. In addition, a remote, private cloud infrastructure together with a mobile application was created to manage the information generated. On-field tests were performed to assess the technical feasibility of the system. The application provides with on-demand ICU patients' movement flow around the complex. Although designed for the ICU-admitted patients' context, the system could be easily extrapolated to other use cases.
  • PublicationOpen Access
    Enabling customizable services for multimodal smart mobility with city-platforms
    (IEEE, 2021) Al-Rahamneh, Anas; Astrain Escola, José Javier; Villadangos Alonso, Jesús; Klaina, Hicham; Picallo Guembe, Imanol; López Iturri, Peio; Falcone Lanas, Francisco; Estatistika, Informatika eta Matematika; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Estadística, Informática y Matemáticas; Ingeniería Eléctrica, Electrónica y de Comunicación; Gobierno de Navarra / Nafarroako Gobernua
    In the last decades, the cities' capacity for generating digital information has grown exponentially. In this context, the successful implementation of smart cities' concept depends on the current possibility of handling the significant volumes of sensed data. This is particularly notorious in the case of urban mobility. Researchers in the field of urban planning have shown a great interest in urban mobility problems, proposing different route recommendation services towards making it easier and safer to move around the city. This paper addresses the development of an urban data platform and how to obtain and integrate information from sensors and other data sources to provide aggregated and intelligent views of raw data to support urban mobility. With the aim of evaluating the efficiency of the developed platform, we present an intelligent urban mobility solution, where the context-awareness, user preferences, and environmental factors play a significant role in the process of route planning. Finally, our work provides an experiment to assess different long-range wireless communication technologies to enable its implementation within an urban environment.
  • PublicationOpen Access
    Analysis of inter-train wireless connectivity to enable context aware rail applications
    (Springer, 2021) Picallo Guembe, Imanol; López Iturri, Peio; Celaya Echarri, Mikel; Azpilicueta Fernández de las Heras, Leyre; Astrain Escola, José Javier; Falcone Lanas, Francisco; Estadística, Informática y Matemáticas; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Estatistika, Informatika eta Matematika; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    Train systems are fundamental players within multi-modal transit systems, providing efficient transportation means for passengers and goods. In the framework of Smart Cities and Smart Regions, providing context aware environments is compulsory in order to take full advantage of system integration, with updated information exchange among Intelligent Transportation system deployments. In this work, inter-train wireless system connectivity is analyzed with the aid of deterministic 3D wireless channel approximations, with the aim of obtaining estimations of frequency/power volumetric channel distributions, as well as time domain characteristics, for different frequency bands. The results show the impact of the complex inter-train scenario conditions, which require precise channel modelling in order to perform optimal network design, planning and optimization tasks.
  • PublicationOpen Access
    An IoT framework for SDN based city mobility
    (Springer, 2021) Al-Rahamneh, Anas; Astrain Escola, José Javier; Villadangos Alonso, Jesús; Klaina, Hicham; Picallo Guembe, Imanol; López Iturri, Peio; Falcone Lanas, Francisco; Estatistika, Informatika eta Matematika; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Estadística, Informática y Matemáticas; Ingeniería Eléctrica, Electrónica y de Comunicación
    The Internet of Things (IoT) is becoming more widespread, with global application in a wide range of commercial sectors, utilizing a variety of technologies for customized use in specific environments. The combinationof applications and protocolsand the unique requirements of each environment present a significant challenge for IoT applications, necessitating communication and message exchange support. This paper presents a proposed SDN-based edge smart bypass/ multiprotocol switching for bicycle networks that supports functionalities of coordination of various wireless transmission protocols. A performance assessment will be presented, addressing a comparison between the different protocols (LoRaWAN vs. Sigfox) in terms radio coverage.
  • PublicationOpen Access
    Basketball player on-body biophysical and environmental parameter monitoring based on wireless sensor network integration
    (IEEE, 2021) Picallo Guembe, Imanol; López Iturri, Peio; Astrain Escola, José Javier; Aguirre Gallego, Erik; Azpilicueta Fernández de las Heras, Leyre; Celaya Echarri, Mikel; Villadangos Alonso, Jesús; Falcone Lanas, Francisco; Matematika eta Informatika Ingeniaritza; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Matemática e Informática; Ingeniería Eléctrica, Electrónica y de Comunicación
    Sport activities have benefited in recent years from the progressive adoption of different technological assets in order to improve individual as well as group training, collect different statistics or enhance the spectator experiences. The progressive adoption of Internet of Things paradigms can also be considered within the scope of sport activities, providing high levels of user interactivity as well as enabling cloud-based data storage and processing. In this work, a system for monitoring biophysical, kinematic and environmental parameters within the development of basketball training is presented. A set of on-body nodes with multiple sensors and wireless body area network capabilities have been designed, implemented and tested under real training conditions during a match. Wireless channel analysis results have been obtained with the aid of in house implemented deterministic 3D ray launching algorithm, providing accurate coverage/capacity estimations in relation with human body consideration in the field as well as in the stadium. Measurement results give relevant information in relation with individual player characteristics as well as with team characteristics, providing a flexible tool to improve training development of basketball.
  • PublicationOpen Access
    Aggregator to electric vehicle LoRaWAN based communication analysis in vehicle-to-grid systems in smart cities
    (IEEE, 2020) Klaina, Hicham; Picallo Guembe, Imanol; López Iturri, Peio; Astrain Escola, José Javier; Azpilicueta Fernández de las Heras, Leyre; Falcone Lanas, Francisco; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Estadística, Informática y Matemáticas
    Recently, there has been growing attention to the power grid management due to the increasing concerns on global warming. With the advancement in electric vehicles (EV) industry and the evolution in batteries, EVs become an important contributor to the grid with capability of bidirectional power exchange with the grid. In this context, Vehicle-to-Grid (V2G) systems enable multiple functionalities between EVs and the corresponding aggregator. Thus, reliable, long-range communication capabilities between aggregator and EVs is compulsory. In this paper, wireless channel analysis for aggregator and electrical vehicle communication using Long-Range Wide Area Network (LoRaWAN) technology in V2G is presented, in order to test a low-cost solution with large coverage and reduced power consumption profile. Wireless channel and system-level measurements have been performed in a real urban scenario between EV's charging station in Pamplona (Spain) and a vehicle in motion using LoRaWAN 868 MHz devices. Wireless channel characterization is performed by implementing a full 3D urban scenario model, including elements such as buildings, vehicles, users and urban infrastructure such as lamp posts and benches. By means of in-house developed 3D Ray Launching algorithm with hybrid simulation capabilities, estimations of received power levels, signal to noise ratio and time domain parameters have been obtained, for the complete volume of the scenario under test in dense urban conditions. V2G end to end communication has been validated by implementing an intra-vehicle Controller Area Network-BUS (CAN BUS) data gathering system connected to the vehicle LoRaWAN transceiver and subsequently, to a cloud-based web service. The results show that the accurate deterministic based radio channel analysis enables to optimize the network design of LoRaWAN networks in a vehicular environment, considering inter-vehicular and infrastructure links, enabling scalable, low cost end to end data exchange for the deployment of ancillary V2G services.