Urricelqui Polvorinos, Javier
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Urricelqui Polvorinos
First Name
Javier
person.page.departamento
Ingeniería Eléctrica y Electrónica
person.page.instituteName
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
36 results
Search Results
Now showing 1 - 10 of 36
Publication Open Access Brillouin optical time-domain analysis sensor with pump pulse amplification(Optical Society of America, 2016) Mompó Roselló, Juan José; Urricelqui Polvorinos, Javier; Loayssa Lara, Alayn; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaWe demonstrate a simple technique to provide conventional Brillouin optical time-domain analysis sensors with mitigation for pump pulse attenuation. The technique is based on operating the sensor in loss configuration so that energy is transferred from the probe wave to the pump pulse that becomes amplified as it counter-propagates with the probe wave. Furthermore, the optical frequency of the probe wave is modulated along the fiber so that the pump pulse experiences a flat total gain spectrum that equally amplifies all the spectral components of the pulse, hence, preventing distortion. This frequency modulation of the probe brings additional advantages because it provides increased tolerance to non-local effects and to spontaneous Brillouin scattering noise, so that a probe power above the Brillouin threshold of the fiber can be safely deployed, hence, increasing the signal-to-noise ratio of the measurement. The method is experimentally demonstrated in a 100-km fiber link, obtaining a measurement uncertainty of 1 MHz at the worst-contrast position.Publication Open Access Effects of pump pulse extinction ratio in Brillouin optical time-domain analysis sensors(Optical Society of America, 2017) Iribas Pardo, Haritz; Mariñelarena Ollacarizqueta, Jon; Feng, Cheng; Urricelqui Polvorinos, Javier; Schneider, Thomas; Loayssa Lara, Alayn; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaWe report on two previously unknown non-local effects that have been found to impair Brillouin optical time-domain analysis (BOTDA) sensors that deploy limited extinction ratio (ER) pump pulses. The first one originates in the increased depletion of the pedestal of the pump pulses by the amplified probe wave, which in turn entails a reduced amplification of the probe and a measurement distortion. The second effect is due to the interplay between the transient response of the erbium-doped fiber amplifiers (EDFA) that are normally deployed to amplify the pump and the pedestal of the pump pulses. The EDFA amplification modifies the pedestal that follows the pulses in such a way that it also leads to a distortion of the measured gain spectra after normalization. Both effects are shown to lead to non-local effects in the measurements that have similar characteristics to those induced by pump pulse depletion. In fact, the total depletion factor for calculations of the Brillouin frequency shift (BFS) error in BOTDA sensors is shown to be the addition of the depletion factors linked to the pump pulse as well as the pedestal. A theoretical model is developed to analyze both effects by numerical simulation. Furthermore, the effects are investigated experimentally in long-range BOTDA sensors. The pedestal depletion effect is shown to severely constrain the probe power as well as the minimum ER of the pulses that can be deployed in BOTDA sensors. For instance, it is shown that, in a long-range dual-probe BOTDA, an ER higher that 32-dB, which is above that provided by standard electro-optic modulators (EOM), is necessary to be able to deploy a probe power of -3 dBm, which is the theoretical limit for that type of sensors. Even more severe can be the limitation due to the depletion effect induced by the EDFA transient response. It is found that the impairments brought by this effect are independent of the probe power, hence setting an ultimate limit for the BOTDA sensor performance. Experimentally, a long-range BOTDA deploying a 26-dB ER EOM and a conventional EDFA is shown to exhibit a BFS error higher than 1 MHz even for very small probe power.Publication Open Access Overcoming non-local effects and Brillouin threshold limitations in Brillouin distributed sensors(SPIE, 2015) Urricelqui Polvorinos, Javier; Ruiz Lombera, Rubén; Sagüés García, Mikel; Mirapeix, Jesús; López Higuera, José Miguel; Loayssa Lara, Alayn; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta ElektronikoaWe demonstrate, for the first time to our knowledge, a Brillouin optical time domain analysis sensor that is able to operate with a probe power larger than the Brillouin threshold of the deployed sensing fiber and that is free from detrimental non-local effects. The technique is based on a dual-probe-sideband setup in which a frequency modulation of the probes waves along the fiber is introduced. This makes the frequency of maximum interaction between pump and probes to vary along the fiber, thus mitigating the pump pulse depletion and making it possible to use very large probe power, which brings an improved signal-to-noise ratio in detection.Publication Open Access Cost-effective Brillouin optical time-domain analysis sensor using a single optical source and passive optical filtering(Hindawi Publishing Corporation, 2016) Iribas Pardo, Haritz; Urricelqui Polvorinos, Javier; Mariñelarena Ollacarizqueta, Jon; Sagüés García, Mikel; Loayssa Lara, Alayn; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaWe present a simplified configuration for distributed Brillouin optical time-domain analysis sensors that aims to reduce the cost of the sensor by reducing the number of components required for the generation of the two optical waves involved in the sensing process. Te technique is based on obtaining the pump and probe waves by passive optical filtering of the spectral components generated in a single optical source that is driven by a pulsed RF signal. Te optical source is a compact laser with integrated electroabsorption modulator and the optical filters are based on fiber Bragg gratings. Proof-of-concept experiments demonstrate 1m spatial resolution over a 20km sensing fiber with a 0.9MHz precision in the measurement of the Brillouin frequency shiſt, a performance similar to that of much more complex setups. Furthermore, we discuss the factors limiting the sensor performance, which are basically related to residual spectral components in the filtering process.Publication Open Access BOTDA measurements tolerant to non-local effects by using a phase-modulated probe wave and RF demodulation(Optical Society of America, 2013) Urricelqui Polvorinos, Javier; Sagüés García, Mikel; Loayssa Lara, Alayn; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaWe demonstrate a Brillouin optical time domain analysis sensor based on a phase modulated probe wave and RF demodulation that provides measurements tolerant to frequency dependent variations of the pump pulse power induced by non local effects. The tolerance to non local effects is based on the special characteristics of the detection process, which provides an RF phase shift signal that is largely independent of the Brillouin gain magnitude. Proof of concept experiments performed over a 20 km long fiber demonstrate that the measured RF phase shift spectrum remains unaltered for large frequency dependent deformations of the pump pulse power. Therefore, it allows the use of a higher optical power of the probe wave, which leads to an enhancement of the detected signal to noise ratio. This can be used to extend the sensing distance, to improve the accuracy of the Brillouin frequency shift measurements, and to reduce the measurement time.Publication Open Access Structural health monitoring of solar trackers using distributed fiber optic sensors(SPIE, 2019) Mariñelarena Ollacarizqueta, Jon; Mompó Roselló, Juan José; Zurita Gabasa, Jesús; Urricelqui Polvorinos, Javier; Júdez Colorado, Aitor; López-Amo Sáinz, Manuel; Jiménez Romero, Sergio; Achaerandio, Álvaro; Loayssa Lara, Alayn; Institute of Smart Cities - ISC; Gobierno de Navarra / Nafarroako Gobernua, 0011-1365-2017-000122; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaWe demonstrate the application of a novel type of distributed fiber optic sensors (DFOSs) to dynamically monitor the effects of wind on solar tracker structures used in photovoltaic power stations. This DFOS is based on the stimulated Brillouin scattering nonlinear optical effect in optical fiber, which can be used to measure the distribution of strain and temperature along a given structure. However, contrary to existing solutions, the sensor provides dynamic real-time measurements with hundreds or even thousands of full simultaneous measurements for all positions in the fiber each second. Moreover, high-precision and high spatial resolution are obtained. This so-called dynamic Brillouin optical time-domain analysis (D-BOTDA) sensor provides real-time monitoring of the bending and torsion of the structure of solar trackers in response to wind load. This helps the solar tracker manufacturer asses and improve the mechanical designs so as to introduce corrective measures and develop cost-effective components that properly withstand the effects of wind at any given location. We experimentally demonstrate the application of a D-BOTDA sensing system to measure distributed bending and, for the first time to our knowledge, also distributed torsion along the stressed beam of the solar tracker. For this purpose, we have developed a procedure to instrument the torsion beam with two optical sensing fibers that are fixed helically wound along the beam in opposite directions, so that any common-mode thermal or bending effects are removed. We initially performed tests in a laboratory facility in which sections of the torsion beam could be subjected to controlled moments. Static and dynamic loads were applied and the measured deformations were compared to those obtained with fiber Bragg gratings, which just provide point measurements of strain. In both cases, full agreement was demonstrated. Finally, the system was installed in an operational solar park.Publication Open Access Overcoming non-local effects and Brillouin threshold limitations in Brillouin optical time domain sensors(IEEE, 2015) Ruiz Lombera, Rubén; Urricelqui Polvorinos, Javier; Sagüés García, Mikel; Mirapeix, Jesús; López Higuera, José Miguel; Loayssa Lara, Alayn; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaWe demonstrate, for the first time to our knowledge, a Brillouin optical time domain analysis (BOTDA) sensor that is able to operate with a probe power larger than the Brillouin threshold of the deployed sensing fiber and that is free from detrimental non-local effects. The technique is based on a dual-probe-sideband setup in which an optical frequency modulation of the probe waves along the fiber is introduced. This makes the optical frequency of the Brillouin interactions induced by each probe wave on the pump to vary along the fiber so that two broadband Brillouin gain and loss spectra that perfectly compensate are created. As a consequence, the pulse spectral components remain undistorted avoiding non-local effects. Therefore, a very large probe power can be injected, which improves the signal-to-noise ratio in detection for long-range BOTDA. Moreover, the probe power can even exceed the Brillouin threshold limit due to their frequency modulation, which reduces the effective amplification of spontaneous Brillouin scattering in the fiber. Experiments demonstrate the technique in a 50-km sensing link in which 8 dBm of probe power is injected.Publication Open Access Optical fiber sensors for asphalt structures monitoring(Optica Publishing Group, 2016) Bravo Acha, Mikel; Rota Rodrigo, Sergio; Leandro González, Daniel; Loayssa Lara, Alayn; Urricelqui Polvorinos, Javier; Bravo Acha, A.; Bravo Navas, M.; Mitxelena, J. R.; Martínez Mazo, J. J.; López-Amo Sáinz, Manuel; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenA novel optical fiber installation method was explored for asphalt monitoring. Glassfiber polymer encapsulated SMF was installed in the intermediate and surface layers in order to study the strain sensitivity with a distributed strain interrogator.Publication Open Access Brillouin optical time-domain analysis sensor assisted by Brillouin distributed amplification of pump pulses(Optical Society of America, 2015) Urricelqui Polvorinos, Javier; Sagüés García, Mikel; Loayssa Lara, Alayn; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaWe demonstrate the extension of the measurement range of Brillouin optical time-domain analysis (BOTDA) sensors using a distributed Brillouin amplifier (DBA). The technique is based on injecting a DBA pump wave in the fiber to generate an additional Brillouin interaction that amplifies the BOTDA pump pulses and compensates optical fiber attenuation. This amplification does not introduce any significant noise to the BOTDA’s probe wave due to the inherent directionality of the Brillouin gain. Additionally, we deploy a differential pulse-width pair measurement method to avoid measurement errors due to the interplay between the self-phase modulation effect and the changes in the temporal shape of the pulses induced by the transient behavior of Brillouin gain. Experimental proof-of-concept results in a 50-km fiber link demonstrate full compensa- tion of the fiber’s attenuation with no penalty on the signal-to-noise ratio of the detected signal.Publication Open Access Enhanced tolerance to pulse extinction ratio in Brillouin optical time domain analysis sensors by dithering of the optical source(SPIE, 2015) Iribas Pardo, Haritz; Urricelqui Polvorinos, Javier; Sagüés García, Mikel; Loayssa Lara, Alayn; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaWe demonstrate the relaxation of the stringent requirements placed on the pulse extinction ratio in long-range Brillouin optical time-domain analysis sensors (BOTDA) by modulating the wavelength of the laser source that is used to generate both pump and probe waves. This modulation makes the counter-propagating pulse pedestal and probe waves to become correlated only at certain locations in the fiber, thus reducing the gain experienced by the probe wave, which is precisely the process that limits the performance in long-range BOTDAs. Proof-of-concept experimental results in a 20-km sensing link demonstrate a 6-dB reduction of the required modulator extinction ratio.