Carlosena Remírez, Laura

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Carlosena Remírez

First Name

Laura

person.page.departamento

Ingeniería

person.page.instituteName

ISC. Institute of Smart Cities

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 1 of 1
  • PublicationOpen Access
    On the energy potential of daytime radiative cooling for urban heat island mitigation
    (Elsevier, 2020) Carlosena Remírez, Laura; Ruiz-Pardo, Álvaro; Feng, Jie; Irulegi, Olatz; Hernández-Minguillón, Rufino J.; Santamouris, Mattheos; Ingeniería; Ingeniaritza
    The objective of this paper is to present the potential of daytime radiative cooling materials as a strategy to mitigate the Urban Heat Island effect. To evaluate the cooling potential of daytime radiative cooling materials, 15 theoretical materials and seven existing materials were simulated: two radiative cooling materials, a coolmaterial, two white paints, a thermochromic paint and a construction material. The novelty of this study is that it shows that the optimal spectral characteristics of radiative cooling materials depending on the climate conditions and the type of application. A sensitivity analysis was performed to evaluate the impact of each wavelength emissivity on the ability to achieve sub-ambient radiative cooling. The sensitivity analysis comprised a total of 90 theoretical materials with 15 different wavelength combinations and 6 emissivity values. The heat transfer model, which includes conduction, convection, and radiation, was developed using a spectrally-selective sky model. Two conditions were considered: a very conductive surface and a highly insulated one. All the materials were simulated in two cities that suffer from the Urban Heat Island effect—Phoenix and Sydney. The mean surface temperature reduction achieved was 5.30 ◦C in Phoenix and 4.21 ◦C in Sydney. The results presented suggest that the type of application (active or passive) is a determinant factor in the design of radiative cooling materials. Modifying the spectra of the materials led to a substantial change in the cooling potential. A material that performs well in a dry climate as a passive solution could perform poorly as an active solution.