Falcone Lanas, Francisco
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Falcone Lanas
First Name
Francisco
person.page.departamento
Ingeniería Eléctrica, Electrónica y de Comunicación
person.page.instituteName
ISC. Institute of Smart Cities
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
37 results
Search Results
Now showing 1 - 10 of 37
Publication Open Access Intelligent SDN-based multi-protocol selector for IoT-enabled NMT networks(IEEE, 2021) Al-Rahamneh, Anas; Astrain Escola, José Javier; López Iturri, Peio; Picallo Guembe, Imanol; Falcone Lanas, Francisco; Ingeniería Eléctrica, Electrónica y de Comunicación; Estadística, Informática y Matemáticas; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Estatistika, Informatika eta MatematikaThe popularity of the Internet of Things is increasing and it is being used in many commercial sectors, using customized technologies for specific environments. Applications and protocols, and the unique requirements of each environment, pose a significant challenge for IoT applications, necessitating communication and message exchange support. This paper aims to propose an intelligent SDN-Based multi-protocol selector for IoT-enabled NMT (NonMotorized Transportation) networks. The main goal of this work is to give the mobile nodes within IoT-enabled NMT networks the flexibility to choose the appropriate wireless communication protocol from several protocols they have to transmit information according to criteria, including battery life, data size and priority of the packet, to pass the most important data first.Publication Open Access IVAN: Intelligent van for the distribution of pharmaceutical drugs(MDPI, 2012) Moreno, Asier; Angulo Martínez, Ignacio; Perallos Ruiz, Asier; Landaluce, Hugo; García Zuazola, Ignacio Julio; Azpilicueta Fernández de las Heras, Leyre; Astrain Escola, José Javier; Falcone Lanas, Francisco; Villadangos Alonso, Jesús; Ingeniería Eléctrica y Electrónica; Ingeniería Matemática e Informática; Ingeniaritza Elektrikoa eta Elektronikoa; Matematika eta Informatika IngeniaritzaThis paper describes a telematic system based on an intelligent van which is capable of tracing pharmaceutical drugs over delivery routes from a warehouse to pharmacies, without altering carriers' daily conventional tasks. The intelligent van understands its environment, taking into account its location, the assets and the predefined delivery route; with the capability of reporting incidences to carriers in case of failure according to the established distribution plan. It is a non-intrusive solution which represents a successful experience of using smart environments and an optimized Radio Frequency Identification (RFID) embedded system in a viable way to resolve a real industrial need in the pharmaceutical industry. The combination of deterministic modeling of the indoor vehicle, the implementation of an ad-hoc radiating element and an agile software platform within an overall system architecture leads to a competitive, flexible and scalable solution.Publication Open Access Design and performance analysis of wireless body area networks in complex indoor e-Health hospital environments for patient remote monitoring(SAGE, 2016) Aguirre Gallego, Erik; López Iturri, Peio; Azpilicueta Fernández de las Heras, Leyre; Rivarés Garasa, Carmen; Astrain Escola, José Javier; Villadangos Alonso, Jesús; Falcone Lanas, Francisco; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Ingeniería Matemática e Informática; Matematika eta Informatika IngeniaritzaIn this article, the design and performance analysis of wireless body area network–based systems for the transmission of medical information readable in an android-based application deployed within complex indoor e-Health scenarios is presented. The scenario under analysis is an emergency room area, where a patient is being monitored remotely with the aid of wearable wireless sensors placed at different body locations. Due to the advent of Internet of Things, in the near future a cloud of a vast number of wireless devices will be operating at the same time, potentially interfering one another. Ensuring good performance of the deployed wireless networks in this kind of environment is mandatory and obtaining accurate radio propagation estimations by means of a computationally efficient algorithm is a key issue. For that purpose, an in-house three-dimensional ray launching algorithm is employed, which provides radio frequency power distribution values, power delay profiles, and delay spread values for the complete volume of complex indoor scenarios. Using this information together with signal-to-noise estimations and link budget calculations, the most suitable wireless body area network technology for this context is chosen. Additionally, an in-house developed human body model has been developed in order to model the impact of the presence of monitored patients. A campaign of measurements has been carried out in order to validate the obtained simulation results. Both the measurements and simulation results illustrate the strong influence of the presented scenario on the overall performance of the wireless body area networks: losses due to material absorption and the strong influence of multipath components due to the great number of obstacles and the presence of persons make the use of the presented method very useful. Finally, an android-based application for the monitoring of patients is presented and tested within the emergency room scenario, providing a flexible solution to increase interactivity in health service provision.Publication Open Access Analysis of inter-train wireless connectivity to enable context aware rail applications(Springer, 2021) Picallo Guembe, Imanol; López Iturri, Peio; Celaya Echarri, Mikel; Azpilicueta Fernández de las Heras, Leyre; Astrain Escola, José Javier; Falcone Lanas, Francisco; Estadística, Informática y Matemáticas; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Estatistika, Informatika eta Matematika; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenTrain systems are fundamental players within multi-modal transit systems, providing efficient transportation means for passengers and goods. In the framework of Smart Cities and Smart Regions, providing context aware environments is compulsory in order to take full advantage of system integration, with updated information exchange among Intelligent Transportation system deployments. In this work, inter-train wireless system connectivity is analyzed with the aid of deterministic 3D wireless channel approximations, with the aim of obtaining estimations of frequency/power volumetric channel distributions, as well as time domain characteristics, for different frequency bands. The results show the impact of the complex inter-train scenario conditions, which require precise channel modelling in order to perform optimal network design, planning and optimization tasks.Publication Open Access Optimization and design of wireless systems for the implementation of context aware scenarios in railway passenger vehicles(IEEE, 2017) Azpilicueta Fernández de las Heras, Leyre; Astrain Escola, José Javier; López Iturri, Peio; Granda, Fausto; Vargas Rosales, César; Villadangos Alonso, Jesús; Perallos Ruiz, Asier; Bahillo, Alfonso; Falcone Lanas, Francisco; Ingeniería Matemática e Informática; Matematika eta Informatika Ingeniaritza; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta ElektronikoaIn this paper, intra-wagon wireless communication performance is analyzed, in order to account for inherent scenario complexity in the deployment phase of wireless systems toward the implementation of a context-aware environment. A real commercial passenger wagon has been simulated by means of an in-house-developed 3-D ray launching code, accounting for embedded wagon elements as well as variable user densities within the passenger wagon. Onboard measurements of a designed and deployed wireless sensor network are obtained, showing good agreement with wireless channel estimations for two different frequencies of operation. Energy consumption behavior and user density impact have also been analyzed and estimated as a function of network topology and the operational mode. These results can aid in wireless transceivers deployment configurations, in order to minimize power consumption, optimize interference levels, and increase overall service performance.Publication Open Access Aggregator to electric vehicle LoRaWAN based communication analysis in vehicle-to-grid systems in smart cities(IEEE, 2020) Klaina, Hicham; Picallo Guembe, Imanol; López Iturri, Peio; Astrain Escola, José Javier; Azpilicueta Fernández de las Heras, Leyre; Falcone Lanas, Francisco; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Estadística, Informática y MatemáticasRecently, there has been growing attention to the power grid management due to the increasing concerns on global warming. With the advancement in electric vehicles (EV) industry and the evolution in batteries, EVs become an important contributor to the grid with capability of bidirectional power exchange with the grid. In this context, Vehicle-to-Grid (V2G) systems enable multiple functionalities between EVs and the corresponding aggregator. Thus, reliable, long-range communication capabilities between aggregator and EVs is compulsory. In this paper, wireless channel analysis for aggregator and electrical vehicle communication using Long-Range Wide Area Network (LoRaWAN) technology in V2G is presented, in order to test a low-cost solution with large coverage and reduced power consumption profile. Wireless channel and system-level measurements have been performed in a real urban scenario between EV's charging station in Pamplona (Spain) and a vehicle in motion using LoRaWAN 868 MHz devices. Wireless channel characterization is performed by implementing a full 3D urban scenario model, including elements such as buildings, vehicles, users and urban infrastructure such as lamp posts and benches. By means of in-house developed 3D Ray Launching algorithm with hybrid simulation capabilities, estimations of received power levels, signal to noise ratio and time domain parameters have been obtained, for the complete volume of the scenario under test in dense urban conditions. V2G end to end communication has been validated by implementing an intra-vehicle Controller Area Network-BUS (CAN BUS) data gathering system connected to the vehicle LoRaWAN transceiver and subsequently, to a cloud-based web service. The results show that the accurate deterministic based radio channel analysis enables to optimize the network design of LoRaWAN networks in a vehicular environment, considering inter-vehicular and infrastructure links, enabling scalable, low cost end to end data exchange for the deployment of ancillary V2G services.Publication Open Access Basketball player on-body biophysical and environmental parameter monitoring based on wireless sensor network integration(IEEE, 2021) Picallo Guembe, Imanol; López Iturri, Peio; Astrain Escola, José Javier; Aguirre Gallego, Erik; Azpilicueta Fernández de las Heras, Leyre; Celaya Echarri, Mikel; Villadangos Alonso, Jesús; Falcone Lanas, Francisco; Matematika eta Informatika Ingeniaritza; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Matemática e Informática; Ingeniería Eléctrica, Electrónica y de ComunicaciónSport activities have benefited in recent years from the progressive adoption of different technological assets in order to improve individual as well as group training, collect different statistics or enhance the spectator experiences. The progressive adoption of Internet of Things paradigms can also be considered within the scope of sport activities, providing high levels of user interactivity as well as enabling cloud-based data storage and processing. In this work, a system for monitoring biophysical, kinematic and environmental parameters within the development of basketball training is presented. A set of on-body nodes with multiple sensors and wireless body area network capabilities have been designed, implemented and tested under real training conditions during a match. Wireless channel analysis results have been obtained with the aid of in house implemented deterministic 3D ray launching algorithm, providing accurate coverage/capacity estimations in relation with human body consideration in the field as well as in the stadium. Measurement results give relevant information in relation with individual player characteristics as well as with team characteristics, providing a flexible tool to improve training development of basketball.Publication Open Access An IoT framework for SDN based city mobility(Springer, 2021) Al-Rahamneh, Anas; Astrain Escola, José Javier; Villadangos Alonso, Jesús; Klaina, Hicham; Picallo Guembe, Imanol; López Iturri, Peio; Falcone Lanas, Francisco; Estatistika, Informatika eta Matematika; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Estadística, Informática y Matemáticas; Ingeniería Eléctrica, Electrónica y de ComunicaciónThe Internet of Things (IoT) is becoming more widespread, with global application in a wide range of commercial sectors, utilizing a variety of technologies for customized use in specific environments. The combinationof applications and protocolsand the unique requirements of each environment present a significant challenge for IoT applications, necessitating communication and message exchange support. This paper presents a proposed SDN-based edge smart bypass/ multiprotocol switching for bicycle networks that supports functionalities of coordination of various wireless transmission protocols. A performance assessment will be presented, addressing a comparison between the different protocols (LoRaWAN vs. Sigfox) in terms radio coverage.Publication Open Access Implementation and operational analysis of an interactive intensive care unit within a smart health context(MDPI, 2018) López Iturri, Peio; Aguirre Gallego, Erik; Trigo Vilaseca, Jesús Daniel; Astrain Escola, José Javier; Azpilicueta Fernández de las Heras, Leyre; Serrano Arriezu, Luis Javier; Villadangos Alonso, Jesús; Falcone Lanas, Francisco; Ingeniaritza Elektrikoa eta Elektronikoa; Matematika eta Informatika Ingeniaritza; Institute of Smart Cities - ISC; Ingeniería Eléctrica y Electrónica; Ingeniería Matemática e InformáticaIn the context of hospital management and operation, Intensive Care Units (ICU) are one of the most challenging in terms of time responsiveness and criticality, in which adequate resource management and signal processing play a key role in overall system performance. In this work, a context aware Intensive Care Unit is implemented and analyzed to provide scalable signal acquisition capabilities, as well as to provide tracking and access control. Wireless channel analysis is performed by means of hybrid optimized 3D Ray Launching deterministic simulation to assess potential interference impact as well as to provide required coverage/capacity thresholds for employed transceivers. Wireless system operation within the ICU scenario, considering conventional transceiver operation, is feasible in terms of quality of service for the complete scenario. Extensive measurements of overall interference levels have also been carried out, enabling subsequent adequate coverage/capacity estimations, for a set of Zigbee based nodes. Real system operation has been tested, with ad-hoc designed Zigbee wireless motes, employing lightweight communication protocols to minimize energy and bandwidth usage. An ICU information gathering application and software architecture for Visitor Access Control has been implemented, providing monitoring of the Boxes external doors and the identification of visitors via a RFID system. The results enable a solution to provide ICU access control and tracking capabilities previously not exploited, providing a step forward in the implementation of a Smart Health framework.Publication Open Access Smart cities, IoT y salud: retos de Internet of medical things (IoMT)(Sociedad Española de Informática de la Salud, 2018) Trigo Vilaseca, Jesús Daniel; Serrano Arriezu, Luis Javier; Astrain Escola, José Javier; Falcone Lanas, Francisco; Institute of Smart Cities - ISCLa innovación tecnológica aplicada al ámbito de la salud está permitiendo el rápido desarrollo de la internet de los dispositivos médicos, o en su versión inglesa más aceptada internet of medical things (iomt). En este artículo se pretende dar una visión general de las posibilidades y retos de estas tecnologías, la cuales deben imbricarse como pilar fundamental en el desarrollo de estrategias locales, regionales y estatales de las ciudades inteligentes o smart cities.