Falcone Lanas, Francisco
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Falcone Lanas
First Name
Francisco
person.page.departamento
Ingeniería Eléctrica, Electrónica y de Comunicación
person.page.instituteName
ISC. Institute of Smart Cities
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
87 results
Search Results
Now showing 1 - 10 of 87
Publication Open Access Implementation of context aware e-health environments based on social sensor networks(MDPI, 2016) Aguirre Gallego, Erik; Led Ramos, Santiago; López Iturri, Peio; Azpilicueta Fernández de las Heras, Leyre; Serrano Arriezu, Luis Javier; Falcone Lanas, Francisco; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Gobierno de Navarra / Nafarroako GobernuaIn this work, context aware scenarios applied to e-Health and m-Health in the framework of typical households (urban and rural) by means of deploying Social Sensors will be described. Interaction with end-users and social/medical staff is achieved using a multi-signal input/output device, capable of sensing and transmitting environmental, biomedical or activity signals and information with the aid of a combined Bluetooth and Mobile system platform. The devices, which play the role of Social Sensors, are implemented and tested in order to guarantee adequate service levels in terms of multiple signal processing tasks as well as robustness in relation with the use wireless transceivers and channel variability. Initial tests within a Living Lab environment have been performed in order to validate overall system operation. The results obtained show good acceptance of the proposed system both by end users as well as by medical and social staff, increasing interaction, reducing overall response time and social inclusion levels, with a compact and moderate cost solution that can readily be largely deployed.Publication Open Access Spatial MIMO channel characterization under different vehicular distributions(IEEE, 2024) Rodríguez Corbo, Fidel Alejandro; Celaya Echarri, Mikel; Shubair, Raed M.; Falcone Lanas, Francisco; Azpilicueta Fernández de las Heras, Leyre; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISCConsidering the large benefits brought by multipleinput- multiple-output (MIMO) technologies in vehicular communications, the analysis of MIMO channel characteristics using accurate and efficient channel models for these scenarios has become crucial. In this work, an intensive analysis of the MIMO channel characteristics in a mmWave vehicle-to-infrastructure (V2I) communication link with different vehicular distributions is performed. For that purpose, an in-house deterministic simulation channel model with an embedded MIMO channel approach has been developed. Experimental measurements in the same vehicular scenario have been performed to validate the proposed channel simulation technique. Variations in the capacity of the MIMO system have been analyzed in relation to different channel metrics, obtaining that the main contributors are the Signal-to- Noise Ratio (SNR) and the Angular Spread (AS).Publication Open Access Analysis and description of HOLTIN service provision for AECG monitoring in complex indoor environments(MDPI, 2013) Led Ramos, Santiago; Azpilicueta Fernández de las Heras, Leyre; Aguirre Gallego, Erik; Martínez de Espronceda Cámara, Miguel; Serrano Arriezu, Luis Javier; Falcone Lanas, Francisco; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta ElektronikoaIn this work, a novel ambulatory ECG monitoring device developed in-house called HOLTIN is analyzed when operating in complex indoor scenarios. The HOLTIN system is described, from the technological platform level to its functional model. In addition, by using in-house 3D ray launching simulation code, the wireless channel behavior, which enables ubiquitous operation, is performed. The effect of human body presence is taken into account by a novel simplified model embedded within the 3D Ray Launching code. Simulation as well as measurement results are presented, showing good agreement. These results may aid in the adequate deployment of this novel device to automate conventional medical processes, increasing the coverage radius and optimizing energy consumption.Publication Open Access Evaluation of electromagnetic dosimetry of wireless systems in complex indoor scenarios with human body interaction(EMW Publishing, 2012) Aguirre Gallego, Erik; Arpón Díaz-Aldagalán, Javier; Azpilicueta Fernández de las Heras, Leyre; Ramos González, Victoria; Falcone Lanas, Francisco; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Gobierno de Navarra / Nafarroako GobernuaIn this work, the influence of human body within the estimation of dosimetric values is analyzed. A simplified human body model, including the dispersive nature of material parameters of internal organs, skin, muscle, bones and other elements has been implemented. Such a model has been included within an indoor scenario in which an in-house 3D ray launching code has been applied to estimate received power levels within the complete scenario. The results enhance previous dosimetric estimations, while giving insight on influence of human body model in power level distribution and enabling to analyze the impact in the complete volume of the scenario.Publication Open Access A ray launching-neural network approach for radio wave propagation analysis in complex indoor environments(IEEE, 2014) Azpilicueta Fernández de las Heras, Leyre; Rawat, Meenakshi; Rawat, Karun; Ghannouchi, Fadhel; Falcone Lanas, Francisco; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta ElektronikoaA novel deterministic approach to model the radio wave propagation channels in complex indoor environments reducing computational complexity is proposed. This technique combines a neural network and a 3D ray launching algorithm in order to compute wireless channel performance in indoor scenarios. An example of applying the method for studying indoor radio wave propagation is presented and the results are compared with a very high resolution fully three dimensional ray launching simulation as the reference solution. The new method allows the use of a lower number of launched rays in the simulation scenario whereas intermediate points can be predicted using neural network. Therefore a high gain in terms of computational efficiency (approximately 80% saving in simulation time) is achieved.Publication Open Access Empirical and modeling approach for environmental indoor RF-EMF assessment in complex high-node density scenarios: public shopping malls case study(IEEE, 2021) Celaya Echarri, Mikel; Azpilicueta Fernández de las Heras, Leyre; Ramos, Victoria; López Iturri, Peio; Falcone Lanas, Francisco; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenThis work provides an intensive and comprehensive in-depth study from an empirical and modeling approach of the environmental radiofrequency electromagnetic fields (RF-EMF) radiation exposure in public shopping malls, as an example of an indoor high-node user density context aware environment, where multiple wireless communication systems coexist. For that purpose, current personal mobile communications (2G-5G FR 1) as well as Wi-Fi services (IEEE 802.11n/ac) have been precisely analyzed in order to provide clear RF-EMF assessment insight and to verify compliance with established regulation limits. In this sense, a complete measurements campaign has been performed in different countries, with frequency-selective exposimeters (PEMs), providing real empirical datasets for statistical analysis and allowing discussion and comparison regarding current health effects and safety issues between some of the most common RF-EMF exposure safety standards: ICNIRP 2020 (Spain), IEEE 2019 (Mexico) and a more restrictive regulation (Poland). In addition, environmental RF-EMF exposure assessment simulation results, in terms of spatial E-field characterization and Cumulative Distribution Function (CDF) probabilities, have been provided for challenging incremental high-node user dense scenarios in worst case conditions, by means of a deterministic in-house 3D Ray-Launching (3D-RL) RF-EMF safety simulation technique, showing good agreement with the experimental measurements. Finally, discussion highlighting the contribution and effects of the coexistence of multiple heterogenous networks and services for the environmental RF-EMF radiation exposure assessment has been included, showing that for all measured results and simulated cases, the obtained E-Field levels are well below the exposure limits established in the internationally accepted standards and guidelines. In consequence, the obtained results and the presented methodology could become a starting point to stablish the RF-EMF assessment basis of future complex heterogeneous 5G FR 2 developments on the millimeter wave (mmWave) frequency range, where massive high-node user density networks are expected.Publication Open Access Design and performance analysis of wireless body area networks in complex indoor e-Health hospital environments for patient remote monitoring(SAGE, 2016) Aguirre Gallego, Erik; López Iturri, Peio; Azpilicueta Fernández de las Heras, Leyre; Rivarés Garasa, Carmen; Astrain Escola, José Javier; Villadangos Alonso, Jesús; Falcone Lanas, Francisco; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Ingeniería Matemática e Informática; Matematika eta Informatika IngeniaritzaIn this article, the design and performance analysis of wireless body area network–based systems for the transmission of medical information readable in an android-based application deployed within complex indoor e-Health scenarios is presented. The scenario under analysis is an emergency room area, where a patient is being monitored remotely with the aid of wearable wireless sensors placed at different body locations. Due to the advent of Internet of Things, in the near future a cloud of a vast number of wireless devices will be operating at the same time, potentially interfering one another. Ensuring good performance of the deployed wireless networks in this kind of environment is mandatory and obtaining accurate radio propagation estimations by means of a computationally efficient algorithm is a key issue. For that purpose, an in-house three-dimensional ray launching algorithm is employed, which provides radio frequency power distribution values, power delay profiles, and delay spread values for the complete volume of complex indoor scenarios. Using this information together with signal-to-noise estimations and link budget calculations, the most suitable wireless body area network technology for this context is chosen. Additionally, an in-house developed human body model has been developed in order to model the impact of the presence of monitored patients. A campaign of measurements has been carried out in order to validate the obtained simulation results. Both the measurements and simulation results illustrate the strong influence of the presented scenario on the overall performance of the wireless body area networks: losses due to material absorption and the strong influence of multipath components due to the great number of obstacles and the presence of persons make the use of the presented method very useful. Finally, an android-based application for the monitoring of patients is presented and tested within the emergency room scenario, providing a flexible solution to increase interactivity in health service provision.Publication Open Access Wireless characterization and assessment of an UWB-Based system in industrial environments(IEEE, 2021) Picallo Guembe, Imanol; López Iturri, Peio; Klaina, Hicham; Glaría Ezker, Guillermo; Sáez de Jaúregui Urdanoz, Félix; Zabalza Cestau, José Luis; Azpilicueta Fernández de las Heras, Leyre; Falcone Lanas, Francisco; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Gobierno de Navarra / Nafarroako GobernuaThe advent of Indsutrial Internet of Things is one of the main drivers for the implementation of Industry 4.0 scenarios and applications, in which wireless communication systems play a key role in terms of flexibility, mobility and deployment capabilities. However, the integration of wireless communication systems poses challenges, owing to variable path loss conditions and interference impact. In this work, an Ultra-Wideband (UWB) system for indoor location in very large, complex industrial scenarios is presented. Precise wireless channel characterization for the complete volume of a logistical plant is performed, based on 3D hybrid ray launching approximation, in order to aid network node design process. Wireless characterization, implementation and measurement results are obtained for both 4 GHz and 6 GHz frequency bands, considering different densities of scatterers within the scenario under test. Time domain estimation results have been obtained and compared with time of flight measurement results, showing good agreement. The proposed methodology enables to perform system design and performance tasks, analyzing the impact of variable object density conditions in wireless channel response, providing accurate time of flight estimations without the need of complex channel sounder systems, aiding in optimal system planning and implementation.Publication Open Access Radio characterization for ISM 2.4 GHz wireless sensor networks for judo monitoring applications(MDPI, 2014) López Iturri, Peio; Aguirre Gallego, Erik; Azpilicueta Fernández de las Heras, Leyre; Astrain Escola, José Javier; Villadangos Alonso, Jesús; Falcone Lanas, Francisco; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Ingeniería Matemática e Informática; Matematika eta Informatika IngeniaritzaIn this work, the characterization of the radio channel for ISM 2.4GHz Wireless Sensor Networks (WSNs) for judo applications is presented. The environments where judo activity is held are usually complex indoor scenarios in terms of radiopropagation due to their morphology, the presence of humans and the electromagnetic interference generated by personal portable devices, wireless microphones and other wireless systems used by the media. For the assessment of the impact that the topology and the morphology of these environments have on electromagnetic propagation, an in-house developed 3D ray-launching software has been used in this study. Time domain results as well as estimations of received power level have been obtained for the complete volume of a training venue of a local judo club’s facilities with a contest area with the dimensions specified by the International Judo Federation (IJF) for international competitions. The obtained simulation results have been compared with measurements, which have been carried out deploying ZigBee-compliant XBee Pro modules at presented scenario, using approved Judogis (jacket, trousers and belt). The analysis is completed with the inclusion of an in-house human body computational model. Such analysis has allowed the design and development of an in house application devoted to monitor the practice of judo, in order to aid referee activities, training routines and to enhance spectator experience.Publication Open Access Ubiquitous connected train based on train-to-ground and intra-wagon communications capable of providing on trip customized digital services for passengers(MDPI, 2014) Salaberria, Itziar; Perallos Ruiz, Asier; Azpilicueta Fernández de las Heras, Leyre; Falcone Lanas, Francisco; Carballedo, Roberto; Angulo Martínez, Ignacio; Elejoste Larrucea, Pilar; Bahillo, Alfonso; Astrain Escola, José Javier; Villadangos Alonso, Jesús; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Ingeniería Matemática e Informática; Matematika eta Informatika IngeniaritzaDuring the last years, the application of different wireless technologies has been explored in order to enable Internet connectivity from vehicles. In addition, the widespread adoption of smartphones by citizens represents a great opportunity to integrate such nomadic devices inside vehicles in order to provide new and personalized on trip services for passengers. In this paper, a proposal of communication architecture to provide the ubiquitous connectivity needed to enhance the smart train concept is presented and preliminarily tested. It combines an intra-wagon communication system based on nomadic devices connected through a Bluetooth Piconet Network with a highly innovative train-to-ground communication system. In order to validate this communication solution, several tests and simulations have been performed and their results are described in this paper.