Falcone Lanas, Francisco
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Falcone Lanas
First Name
Francisco
person.page.departamento
Ingeniería Eléctrica, Electrónica y de Comunicación
person.page.instituteName
ISC. Institute of Smart Cities
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
2 results
Search Results
Now showing 1 - 2 of 2
Publication Open Access A metasurface-based single-layered compact AMC-backed dual-band antenna for off-body IoT devices(IEEE, 2021) Ahmad, Sarosh; Paracha, Kashif Nisar; Sheikh, Yawar Ali; Ghaffar, Adnan; Butt, Arslan Dawood; Alibakhshikenari, Mohammad; Soh, Ping Jack; Khan, Salahuddin; Falcone Lanas, Francisco; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de ComunicaciónIn this article, a compact printed monopole dual-band antenna using artificial magnetic conductor (AMC)-plane with improved gain and broader bandwidth, applicable for off-body internet of things (IoT) devices is presented. The monopole antenna consists of two C-shaped resonators connected through a U-shaped monopole, parasitic elements, discrete ground circular rings and a co-planar waveguide (CPW) feedline. Each artificial magnetic conductor (AMC) unit cell consists of a slotted circular and a square stubs, designed with two zero-crossing phases for improving the radiation characteristics and to achieve the high gain. The overall size of the proposed AMC-backed antenna is 44.4 mm ×44.4 mm ×1.6 mm with electrical dimensions of 0.75λ g × 0.75λ g× 0.027λ g. This AMC-backed antenna featured measured bandwidths of 9.6% and 12.4% with improved measured gain values of 4.88 dB and 4.73 dB at 2.45 GHz and 5.8 GHz, respectively. The specific absorption rate (SAR) values are analysed and found to be 1.58 W/kg at 2.45 GHz and 0.9 W/kg at 5.8 GHz. Therefore, the proposed AMC-backed antenna is useful for off-body IoT devices operating at 2.45 and 5.8 GHz industrial, scientific, and medical (ISM) band applications.Publication Open Access A frequency reconfigurable compact planar inverted-F antenna for portable devices(Hindawi, 2022) Ghaffar, Adnan; Altaf, Ahsan; Aneja, Aayush; Li, Xue Jun; Khan, Salahuddin; Alibakhshikenari, Mohammad; Falcone Lanas, Francisco; Limiti, Ernesto; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de ComunicaciónIn this paper, a low-profile, compact size, inexpensive, and easily integrable frequency reconfigurable antenna system is proposed. The proposed antenna consists of an inverted-F shape antenna, capacitors, and switching PIN diodes. The designed antenna element is fabricated on easy available and less expensive FR-4 substrate ( εr = 4.4, tan δ = 0.02). The switching diodes are incorporated within the radiating structure of the antenna design, and by changing the different states of PIN diodes, frequency reconfigurable response is achieved. While adjusting the different states of the diodes, the antenna resonates between 0.841 GHz and 2.12 GHz and covers six different frequency bands. The proposed system has compact size of . The gain of the antenna is between 1.89 and 2.12 dBi. The measurement results shows the good agreement with simulated results for different key performance parameters. Additionally, the proposed antenna shows omni-directional far-field characteristics for various different frequencies.