Falcone Lanas, Francisco
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Falcone Lanas
First Name
Francisco
person.page.departamento
Ingeniería Eléctrica, Electrónica y de Comunicación
person.page.instituteName
ISC. Institute of Smart Cities
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
72 results
Search Results
Now showing 1 - 10 of 72
Publication Open Access Characterization of wireless channel impact on wireless sensor network performance in public transportation buses(IEEE, 2015) Azpilicueta Fernández de las Heras, Leyre; López Iturri, Peio; Aguirre Gallego, Erik; Astrain Escola, José Javier; Villadangos Alonso, Jesús; Zubiri Segura, Cristóbal; Falcone Lanas, Francisco; Ingeniería Eléctrica y Electrónica; Ingeniería Matemática e Informática; Ingeniaritza Elektrikoa eta Elektronikoa; Matematika eta Informatika IngeniaritzaWireless communications systems are growing rapidly during the last two decades and they are gaining a significant role for multiple communication tasks within public transportation buses. In this work, the impact of topology and morphology of different types of urban buses is analyzed with the aid of an in-house developed 3D Ray Launching code and compared with on-board measurements of a deployed Wireless Sensor Network. The presence of human beings has been taken into account, showing a significant influence in the signal attenuation in the case of considering persons. In addition, the statistical analysis of simulation results considering both large and small-scale fading has been performed, providing good agreement with statistics for typical indoor environments. In addition, a Wireless Sensor Network has been programmed and deployed within the buses in order to analyze topological impact with overall system performance, with the aim of minimizing the energy consumption as well as non-desired interference levels. The use of deterministic techniques destined to consider the inherent complexity of the buses can aid in wireless system planning in order to minimize power consumption and increase overall system capacity.Publication Open Access A radio channel model for D2D communications blocked by single trees in forest environments(MDPI, 2019) Picallo Guembe, Imanol; Klaina, Hicham; López Iturri, Peio; Aguirre Gallego, Erik; Celaya Echarri, Mikel; Azpilicueta Fernández de las Heras, Leyre; Eguizábal Garrido, Alejandro; Falcone Lanas, Francisco; Alejos, Ana V.; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de ComunicaciónIn this paper we consider the D2D (Device-to-Device) communication taking place between Wireless Sensor Networks (WSN) elements operating in vegetation environments in order to achieve the radio channel characterization at 2.4 GHz, focusing on the radio links blocked by oak and pine trees modelled from specimens found in a real recreation area located within forest environments. In order to fit and validate a radio channel model for this type of scenarios, both measurements and simulations by means of an in-house developed 3D Ray Launching algorithm have been performed, offering as outcomes the path loss and multipath information of the scenarios under study for forest immersed isolated trees and non-isolated trees. The specific forests, composed of thick in-leaf trees, are called Orgi Forest and Chandebrito, located respectively in Navarre and Galicia, Spain. A geometrical and dielectric model of the trees were created and introduced in the simulation software. We concluded that the scattering produced by the tree can be divided into two zones with different dominant propagation mechanisms: an obstructed line of sight (OLoS) zone far from the tree fitting a log-distance model, and a diffraction zone around the edge of the tree. 2D planes of delay spread value are also presented which similarly reflects the proposed two-zone model.Publication Open Access Design and experimental validation of an augmented reality system with wireless integration for context aware enhanced show experience in auditoriums(IEEE, 2021) Picallo Guembe, Imanol; Vidal Balea, A.; Blanco Novoa, Óscar; López Iturri, Peio; Fraga Lamas, Paula; Azpilicueta Fernández de las Heras, Leyre; Falcone Lanas, Francisco; Fernández Caramés, Tiago M.; Klaina, Hicham; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de ComunicaciónThe development of multiple cultural and social related activities, such as shows related with the performing arts, conferences or presentations rely on facilities such as auditoriums, theatres and conference sites, which are progressively including multiple technological features in order to enhance user experience. There are still however situations in which user experience is limited owing to lack of environment adaption, such as people with disabilities. In this sense, the adoption of Context Aware paradigms within auditoriums can provide adequate functionalities in order to comply with specific needs. This work is aimed at demonstrating the feasibility in enhancing user experience (e.g., improving the autonomy of disabled people) within auditorium and theatre environments, by means of an Augmented Reality (AR) device (HoloLens smart glasses) with wireless system integration. To carry out the demonstration, different elements to build AR applications are described and tested. First, an intensive measurement campaign was performed in a real auditorium in the city of Pamplona (Baluarte Congress Center) in order to evaluate the feasibility of using Wi-Fi enabled AR devices in a complex wireless propagation scenario. The results show that these environments exhibit high levels of interference, owing to the co-existence and non-coordinated operation of multiple wireless communication systems, such as on site and temporary Wi-Fi access points, wireless microphones or communications systems used by performers, staff and users. Deterministic wireless channel estimation based in volumetric 3D Ray Launching have been obtained for the complete scenario volume, in order to assess quality of service metrics. For illustration purposes, a user-friendly application to help hearing impaired people was developed and its main features were tested in the auditorium. Such an application provides users with a 3D virtual space to visualize useful multimedia content like subtitles or additional information about the show, as well as an integrated call button. © 2013 IEEE.Publication Open Access Multimodal minimally invasive wearable technology for epilepsy monitoring: a feasibility study of the periauricular area(IEEE, 2023) Besné, Guillermo M.; López Iturri, Peio; Alegre, Manuel; Artieda, Julio; Trigo Vilaseca, Jesús Daniel; Serrano Arriezu, Luis Javier; Falcone Lanas, Francisco; Valencia Ustárroz, Miguel; Institute of Smart Cities - ISCAmbulatory monitoring is of great interest in both clinical and domestic environments. Despite the technological advances, few monitoring solutions are suitable for medical application and diagnosis. Here, we investigate the feasibility of targeting the periauricular area (ear pavilion, ear canal, and the surrounding skin areas) to implement a multimodal system that fulfills the requirements of ergonomics and minimal obstructiveness in the context of epilepsy monitoring. Six physiological signals are selected and explored for their integration in the area of interest and a ¿proof-of-concept¿ prototype integrating the components in a single portable device targeting the selected location is implemented. Results show mixed results where some parameters are highly reliable, and others are impractical or require customized technology to provide clinically relevant information. To enable data acquisition, storage, and processing within the Internet of Medical Things paradigms, wireless body area transceiver integration is also analyzed in terms of coverage/capacity relations, showing feasibility for such device configuration.Publication Open Access Performance analysis of IEEE 802.15.4 compliant wireless devices for heterogeneous indoor home automation environments(Hindawi, 2012) Nazábal Urriza, Juan Antonio; López Iturri, Peio; Azpilicueta Fernández de las Heras, Leyre; Falcone Lanas, Francisco; Fernández Valdivielso, Carlos; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Gobierno de Navarra / Nafarroako GobernuaThe influence of topology as well as morphology of complex indoor scenarios in the deployment of wireless sensor networks and wireless systems applied to home and building automation systems is analyzed. The existence of loss mechanisms such as material absorption (walls, furniture, etc.) and strong multipath components as well as the increase in the number of wireless sensors within indoor scenarios increases the relevance in the configuration of the heterogeneous wireless systems. Simulation results by means of empirical-based models are compared with an in-house 3D ray launching code as well as measurement results from wireless sensor networks illustrate the strong influence of the indoor scenario in the overall performance. The use of adequate radioplanning strategies lead to optimal wireless network deployments in terms of capacity, quality of service, and reduced power consumption.Publication Open Access Towards environmental RF-EMF assessment of mmwave high-node density complex heterogeneous environments(MDPI, 2021) Celaya Echarri, Mikel; Azpilicueta Fernández de las Heras, Leyre; Rodríguez Corbo, Fidel Alejandro; López Iturri, Peio; Ramos González, Victoria; Alibakhshikenari, Mohammad; Shubair, Raed M.; Falcone Lanas, Francisco; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de ComunicaciónThe densification of multiple wireless communication systems that coexist nowadays, as well as the 5G new generation cellular systems advent towards the millimeter wave (mmWave) frequency range, give rise to complex context-aware scenarios with high-node density heterogeneous networks. In this work, a radiofrequency electromagnetic field (RF-EMF) exposure assessment from an empirical and modeling approach for a large, complex indoor setting with high node density and traffic is presented. For that purpose, an intensive and comprehensive in-depth RF-EMF E-field characterization study is provided in a public library study case, considering dense personal mobile communications (5G FR2 @28 GHz) and wireless 802.11ay (@60 GHz) data access services on the mmWave frequency range. By means of an enhanced in-house deterministic 3D ray launching (3D-RL) simulation tool for RF-EMF exposure assessment, different complex heterogenous scenarios of high complexity are assessed in realistic operation conditions, considering different user distributions and densities. The use of directive antennas and MIMO beamforming techniques, as well as all the corresponding features in terms of radio wave propagation, such as the body shielding effect, dispersive material properties of obstacles, the impact of the distribution of scatterers and the associated electromagnetic propagation phenomena, are considered for simulation. Discussion regarding the contribution and impact of the coexistence of multiple heterogeneous networks and services is presented, verifying compliance with the current established international regulation limits with exposure levels far below the aforementioned limits. Finally, the proposed simulation technique is validated with a complete empirical campaign of measurements, showing good agreement. In consequence, the obtained datasets and simulation estimations, along with the proposed RF-EMF simulation tool, could be a reference approach for the design, deployment and exposure assessment of the current and future wireless communication technologies on the mmWave spectrum, where massive high-node density heterogeneous networks are expected.Publication Open Access Aggregator to electric vehicle LoRaWAN based communication analysis in vehicle-to-grid systems in smart cities(IEEE, 2020) Klaina, Hicham; Picallo Guembe, Imanol; López Iturri, Peio; Astrain Escola, José Javier; Azpilicueta Fernández de las Heras, Leyre; Falcone Lanas, Francisco; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Estadística, Informática y MatemáticasRecently, there has been growing attention to the power grid management due to the increasing concerns on global warming. With the advancement in electric vehicles (EV) industry and the evolution in batteries, EVs become an important contributor to the grid with capability of bidirectional power exchange with the grid. In this context, Vehicle-to-Grid (V2G) systems enable multiple functionalities between EVs and the corresponding aggregator. Thus, reliable, long-range communication capabilities between aggregator and EVs is compulsory. In this paper, wireless channel analysis for aggregator and electrical vehicle communication using Long-Range Wide Area Network (LoRaWAN) technology in V2G is presented, in order to test a low-cost solution with large coverage and reduced power consumption profile. Wireless channel and system-level measurements have been performed in a real urban scenario between EV's charging station in Pamplona (Spain) and a vehicle in motion using LoRaWAN 868 MHz devices. Wireless channel characterization is performed by implementing a full 3D urban scenario model, including elements such as buildings, vehicles, users and urban infrastructure such as lamp posts and benches. By means of in-house developed 3D Ray Launching algorithm with hybrid simulation capabilities, estimations of received power levels, signal to noise ratio and time domain parameters have been obtained, for the complete volume of the scenario under test in dense urban conditions. V2G end to end communication has been validated by implementing an intra-vehicle Controller Area Network-BUS (CAN BUS) data gathering system connected to the vehicle LoRaWAN transceiver and subsequently, to a cloud-based web service. The results show that the accurate deterministic based radio channel analysis enables to optimize the network design of LoRaWAN networks in a vehicular environment, considering inter-vehicular and infrastructure links, enabling scalable, low cost end to end data exchange for the deployment of ancillary V2G services.Publication Open Access Analysis and implementation of wireless communications systems and IoT with human body interference in inhomogeneous environments(2021) Picallo Guembe, Imanol; Klaina, Hicham; Azpilicueta Fernández de las Heras, Leyre; López Iturri, Peio; Falcone Lanas, Francisco; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenThe Integration of wireless communication systems is one of the main drivers of the development of the future connected society. However, this will cause challenges due to the non-static channel effect and interference impact. For this reason, a research work is proposed that enables to obtain optimal node location in relation to radio planning tasks (coverage/capacity analysis, number of lost packets, devices’ consumption...), as well as to characterize the environments considering obstacles and human body being, in terms of the received power level in the complete simulation volume and at the time domain level. This will help derive wireless channel models taking into account real channel variations to deploy a Wireless Sensor Network (WSN) and reduce the impact on wireless systems performance.Publication Open Access Analysis of radio wave propagation for ISM 2.4 GHz wireless sensor networks in inhomogeneous vegetation environments(MDPI, 2014) Azpilicueta Fernández de las Heras, Leyre; López Iturri, Peio; Aguirre Gallego, Erik; Mateo Zozaya, Ignacio; Astrain Escola, José Javier; Villadangos Alonso, Jesús; Falcone Lanas, Francisco; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Ingeniería Matemática e Informática; Matematika eta Informatika IngeniaritzaThe use of wireless networks has experienced exponential growth due to the improvements in terms of battery life and low consumption of the devices. However, it is compulsory to conduct previous radio propagation analysis when deploying a wireless sensor network. These studies are necessary to perform an estimation of the range coverage, in order to optimize the distance between devices in an actual network deployment. In this work, the radio channel characterization for ISM 2.4 GHz Wireless Sensor Networks (WSNs) in an inhomogeneous vegetation environment has been analyzed. This analysis allows designing environment monitoring tools based on ZigBee and WiFi where WSN and smartphones cooperate, providing rich and customized monitoring information to users in a friendly manner. The impact of topology as well as morphology of the environment is assessed by means of an in-house developed 3D Ray Launching code, to emulate the realistic operation in the framework of the scenario. Experimental results gathered from a measurement campaign conducted by deploying a ZigBee Wireless Sensor Network, are analyzed and compared with simulations in this paper. The scenario where this network is intended to operate is a combination of buildings and diverse vegetation species. To gain insight in the effects of radio propagation, a simplified vegetation model has been developed, considering the material parameters and simplified geometry embedded in the simulation scenario. An initial location-based application has been implemented in a real scenario, to test the functionality within a context aware scenario. The use of deterministic tools can aid to know the impact of the topological influence in the deployment of the optimal Wireless Sensor Network in terms of capacity, coverage and energy consumption, making the use of these systems attractive for multiple applications in inhomogeneous vegetation environments.Publication Open Access FDTD and empirical exploration of human body and UWB radiation interaction on TOF ranging(IEEE, 2019) Otim, Timothy; Bahillo, Alfonso; Díez, Luis E.; López Iturri, Peio; Falcone Lanas, Francisco; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenIn time-of-flight (TOF)-based human ranging systems, target sensors are often mounted on or close to the human body, which may raise non-line-of-sight (NLOS) cases and lead to significant ranging errors depending on the relative position between the body, transmitter (Tx), and receiver (Rx). In recent years, ultrawideband (UWB) has become a very popular technology for human TOF ranging, but its human body interactions have not been studied yet extensively. In this letter, the UWB and human body interaction is explored by the finite-difference time-domain (FDTD) technique, and the obtained E-field strength variation results are validated by means of commercially available UWB kits. Additionally, an UWB-ranging error model with respect to the human body shadowing effect is proposed and evaluated by extensive measurements, i.e., in indoor environments, line-of-sight (LOS) and NLOS are found to be well modeled by Gaussian and Gamma distributions, respectively, while in outdoor fields, LOS and NLOS are both modeled by Gaussian distributions. The main conclusion of this study is that there is a clear pattern between a gain in the E-field strength and TOF ranging errors. It can be established that in a worst-case scenario, a gain of 4–18 dB is observed, which corresponds to about 30–60 cm of TOF ranging errors.