Falcone Lanas, Francisco
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Falcone Lanas
First Name
Francisco
person.page.departamento
Ingeniería Eléctrica, Electrónica y de Comunicación
person.page.instituteName
ISC. Institute of Smart Cities
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
10 results
Search Results
Now showing 1 - 10 of 10
Publication Open Access Deterministic wireless channel characterization towards the integration of communication capabilities to enable context aware industrial internet of thing environments(Springer, 2022) Picallo Guembe, Imanol; López Iturri, Peio; Celaya Echarri, Mikel; Azpilicueta Fernández de las Heras, Leyre; Falcone Lanas, Francisco; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de ComunicaciónIn order to provide interactive capabilities within the context of Internet of Thing (IoT) applications, wireless communication systems play a key role, owing to in-herent mobility, ubiquity and ease of deployment. However, to comply with Quality of Service (QoS) and Quality of Experience (QoE) metrics, coverage/capacity analysis must be performed, to account for the impact of signal blockage as well as multiple interference sources. This analysis is especially complex in the case of indoor scenarios, such as those derived from Industrial Internet of Things (IIoT). In this work, a fully volumetric approach based on hybrid deterministic 3D Ray Launching is employed providing precise wireless channel characterization and hence, system level analysis of indoor scenarios. Coverage/capacity, interference mapping and time domain characterization estimations will be derived, considering different frequencies of operation below 6 GHz. The proposed methodology will be tested against a real measurement scenario, providing full flexibility and scalability for adoption in a wide range of IIoT capable environments.Publication Open Access Wireless characterization and assessment of an UWB-Based system in industrial environments(IEEE, 2021) Picallo Guembe, Imanol; López Iturri, Peio; Klaina, Hicham; Glaría Ezker, Guillermo; Sáez de Jaúregui Urdanoz, Félix; Zabalza Cestau, José Luis; Azpilicueta Fernández de las Heras, Leyre; Falcone Lanas, Francisco; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Gobierno de Navarra / Nafarroako GobernuaThe advent of Indsutrial Internet of Things is one of the main drivers for the implementation of Industry 4.0 scenarios and applications, in which wireless communication systems play a key role in terms of flexibility, mobility and deployment capabilities. However, the integration of wireless communication systems poses challenges, owing to variable path loss conditions and interference impact. In this work, an Ultra-Wideband (UWB) system for indoor location in very large, complex industrial scenarios is presented. Precise wireless channel characterization for the complete volume of a logistical plant is performed, based on 3D hybrid ray launching approximation, in order to aid network node design process. Wireless characterization, implementation and measurement results are obtained for both 4 GHz and 6 GHz frequency bands, considering different densities of scatterers within the scenario under test. Time domain estimation results have been obtained and compared with time of flight measurement results, showing good agreement. The proposed methodology enables to perform system design and performance tasks, analyzing the impact of variable object density conditions in wireless channel response, providing accurate time of flight estimations without the need of complex channel sounder systems, aiding in optimal system planning and implementation.Publication Open Access Patient tracking in a multi-building, tunnel-connected hospital complex(IEEE, 2020) Trigo Vilaseca, Jesús Daniel; Klaina, Hicham; Picallo Guembe, Imanol; López Iturri, Peio; Astrain Escola, José Javier; Falcone Lanas, Francisco; Serrano Arriezu, Luis Javier; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, PJUPNA29Patients admitted to Intensive Care Units (ICU) are transported from and to other units. Knowing their location is strategic for a sound planning of intra-hospital transports as well as resources management. This is even more crucial in big hospital complexes, comprised of several buildings often connected through tunnels. In this work, a patient tracking application in a multi-building, tunnel-connected hospital complex (the Hospital Complex of Navarre) is presented. The system leverages Internet of Medical Things (IoMT) communication technologies, such as Long Range Wide-Area Network (LoRaWAN) and Near Field Communication (NFC). The locations of the LoRaWAN nodes were selected based on several factors, including the situation of the tunnels, buildings services and medical equipment and a literature review on intra-hospital ICU patients' trips. The possible locations of the LoRaWAN gateways were selected based on 3D Ray Launching Simulations, in order to obtain accurate characterization. Once the locations were set, a LoRaWAN radio coverage studio was performed. The main conclusion drawn is that just one LoRaWAN gateway would be enough to cover all overground LoRaWAN nodes deployed. A second one would be required for underground coverage. In addition, a remote, private cloud infrastructure together with a mobile application was created to manage the information generated. On-field tests were performed to assess the technical feasibility of the system. The application provides with on-demand ICU patients' movement flow around the complex. Although designed for the ICU-admitted patients' context, the system could be easily extrapolated to other use cases.Publication Open Access Basketball player on-body biophysical and environmental parameter monitoring based on wireless sensor network integration(IEEE, 2021) Picallo Guembe, Imanol; López Iturri, Peio; Astrain Escola, José Javier; Aguirre Gallego, Erik; Azpilicueta Fernández de las Heras, Leyre; Celaya Echarri, Mikel; Villadangos Alonso, Jesús; Falcone Lanas, Francisco; Matematika eta Informatika Ingeniaritza; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Matemática e Informática; Ingeniería Eléctrica, Electrónica y de ComunicaciónSport activities have benefited in recent years from the progressive adoption of different technological assets in order to improve individual as well as group training, collect different statistics or enhance the spectator experiences. The progressive adoption of Internet of Things paradigms can also be considered within the scope of sport activities, providing high levels of user interactivity as well as enabling cloud-based data storage and processing. In this work, a system for monitoring biophysical, kinematic and environmental parameters within the development of basketball training is presented. A set of on-body nodes with multiple sensors and wireless body area network capabilities have been designed, implemented and tested under real training conditions during a match. Wireless channel analysis results have been obtained with the aid of in house implemented deterministic 3D ray launching algorithm, providing accurate coverage/capacity estimations in relation with human body consideration in the field as well as in the stadium. Measurement results give relevant information in relation with individual player characteristics as well as with team characteristics, providing a flexible tool to improve training development of basketball.Publication Open Access Analysis and implementation of wireless communications systems and IoT with human body interference in inhomogeneous environments(2021) Picallo Guembe, Imanol; Klaina, Hicham; Azpilicueta Fernández de las Heras, Leyre; López Iturri, Peio; Falcone Lanas, Francisco; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenThe Integration of wireless communication systems is one of the main drivers of the development of the future connected society. However, this will cause challenges due to the non-static channel effect and interference impact. For this reason, a research work is proposed that enables to obtain optimal node location in relation to radio planning tasks (coverage/capacity analysis, number of lost packets, devices’ consumption...), as well as to characterize the environments considering obstacles and human body being, in terms of the received power level in the complete simulation volume and at the time domain level. This will help derive wireless channel models taking into account real channel variations to deploy a Wireless Sensor Network (WSN) and reduce the impact on wireless systems performance.Publication Open Access Implementation of an interactive environment with multilevel wireless links for distributed botanical garden in university campus(IEEE, 2020) Klaina, Hicham; Picallo Guembe, Imanol; López Iturri, Peio; Astrain Escola, José Javier; Falcone Lanas, Francisco; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Estadística, Informática y MatemáticasIn this contribution, an end to end system to enable user interaction with a distributed botanical university campus garden is designed, implemented and tested. The proposed system employs different wireless links to collect data related to different bio physiological parameters of both the vegetation mass and the surrounding environment. Detailed analysis of these multilevel communication links is performed by using deterministic volumetric wireless channel estimation and considering underground, near ground and over ground radio propagation conditions. An in-house developed technique enables accurate wireless channel characterization for complete campus scenario considering the multiple link types and all its composing elements. Node definition and network topology is thus obtained by wireless channel analysis of over ground, near ground and underground communication for both 868 MHz and 2.4 GHz Wireless Sensor Networks in an inhomogeneous vegetation environment. Connectivity to enable user interaction as well as for telemetry and tele-control purposes within the campus is achieved by combining ZigBee and LoRaWAN transceivers with the corresponding sensor/actuator platforms. Coverage studies have been performed in order to assess communication capabilities in the set of multiple underground/near ground/over ground links, by means of deterministic channel analysis for the complete university campus location. Measurement results in lab environment as well as full system deployment are presented, showing good agreement with deterministic simulations. Moreover, system level tests have been performed over a physical campus cloud, providing adequate quality of experience metrics. The proposed solution is a scalable system that provides real time trees status monitoring by a cloud-based platform, enabling user interaction within a distributed botanical garden environment in the university campus.Publication Open Access Wireless information power transfer assessment by deterministic radio propagation estimations in smart city contexts(IEEE, 2025-03-12) Picallo Guembe, Imanol; López Iturri, Peio; Klaina, Hicham; Celaya Echarri, Mikel; Rodríguez Corbo, Fidel Alejandro; Azpilicueta Fernández de las Heras, Leyre; Falcone Lanas, Francisco; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISCThe development of context aware environments, such as those given in the framework of Smart Cities and Smart Regions require the use of ubiquitous connectivity and more recently, energy availability for a wide variety of Internet of Things based applications. In this work, estimations of wireless channel distributions for coverage/capacity as well as for energy availability will be presented, for outdoor as well as indoor scenarios with the aid of deterministic inhouse developed simulation tool. Volumetric assessment can be obtained, aiding in the radio network planning process, as well as in the feasibility of electromagnetic based energy harvesting solutions for Internet of Things based applications.Publication Open Access IIoT low-cost Zigbee-based WSN implementation for enhanced production efficiency in a solar protection curtains manufacturing workshop(MDPI, 2024) Klaina, Hicham; Picallo Guembe, Imanol; López Iturri, Peio; Biurrun, Aitor; Alejos, Ana V.; Azpilicueta Fernández de las Heras, Leyre; Socorro Leránoz, Abián Bentor; Falcone Lanas, Francisco; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenNowadays, the Industry 4.0 concept and the Industrial Internet of Things (IIoT) are considered essential for the implementation of automated manufacturing processes across various industrial settings. In this regard, wireless sensor networks (WSN) are crucial due to their inherent mobility, easy deployment and maintenance, scalability, and low power consumption, among other benefits. In this context, the presented paper proposes an optimized and low-cost WSN based on ZigBee communication technology for the monitoring of a real manufacturing facility. The company designs and manufactures solar protection curtains and aims to integrate the deployed WSN into the Enterprise Resource Planning (ERP) system in order to optimize their production processes and enhance production efficiency and cost estimation capabilities. To achieve this, radio propagation measurements and 3D ray launching simulations were conducted to characterize the wireless channel behavior and facilitate the development of an optimized WSN system that can operate in the complex industrial environment presented and validated through on-site wireless channel measurements, as well as interference analysis. Then, a low-cost WSN was implemented and deployed to acquire real-time data from different machinery and workstations, which will be integrated into the ERP system. Multiple data streams have been collected and processed from the shop floor of the factory by means of the prototype wireless nodes implemented. This integration will enable the company to optimize its production processes, fabricate products more efficiently, and enhance its cost estimation capabilities. Moreover, the proposed system provides a scalable platform, enabling the integration of new sensors as well as information processing capabilities.Publication Open Access Radio wave propagation and WSN deployment in complex utility tunnel environments(MDPI, 2020) Celaya Echarri, Mikel; Azpilicueta Fernández de las Heras, Leyre; López Iturri, Peio; Picallo Guembe, Imanol; Aguirre Gallego, Erik; Astrain Escola, José Javier; Villadangos Alonso, Jesús; Falcone Lanas, Francisco; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Matematika eta Informatika Ingeniaritza; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniería Matemática e InformáticaThe significant growth of wireless communications systems in the last years has led to the adoption of a wide range of applications not only for the general public but, also, including utilities and administrative authorities. In this context, the notable expansion of new services for smart cities requires, in some specific cases, the construction of underground tunnels in order to enable the maintenance and operation works of utilities, as well as to reduce the visual impact within the city center. One of the main challenges is that, inherently, underground service tunnels lack coverage from exterior wireless communication systems, which can be potentially dangerous for maintenance personnel working within the tunnels. Accordingly, wireless coverage should be deployed within the underground installation in order to guarantee real-time connectivity for safety maintenance, remote surveillance or monitoring operations. In this work, wireless channel characterization for complex urban tunnel environments was analyzed based on the assessment of LoRaWAN and ZigBee technologies operating at 868 MHz. For that purpose, a real urban utility tunnel was modeled and simulated by means of an in-house three-dimensional ray-launching (3D-RL) code. The utility tunnel scenario is a complex and singular environment in terms of radio wave propagation due to the limited dimensions and metallic elements within it, such as service trays, user pathways or handrails, which were considered in the simulations. The simulated 3D-RL algorithm was calibrated and verified with experimental measurements, after which, the simulation and measurement results showed good agreement. Besides, a complete wireless sensor network (WSN) deployment within the tunnels was presented, providing remote cloud data access applications and services, allowing infrastructure security and safety work conditions. The obtained results provided an adequate radio planning approach for the deployment of wireless systems in complex urban utility scenarios, with optimal coverage and enhanced quality of service.Publication Open Access Design and experimental validation of an augmented reality system with wireless integration for context aware enhanced show experience in auditoriums(IEEE, 2021) Picallo Guembe, Imanol; Vidal Balea, A.; Blanco Novoa, Óscar; López Iturri, Peio; Fraga Lamas, Paula; Azpilicueta Fernández de las Heras, Leyre; Falcone Lanas, Francisco; Fernández Caramés, Tiago M.; Klaina, Hicham; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de ComunicaciónThe development of multiple cultural and social related activities, such as shows related with the performing arts, conferences or presentations rely on facilities such as auditoriums, theatres and conference sites, which are progressively including multiple technological features in order to enhance user experience. There are still however situations in which user experience is limited owing to lack of environment adaption, such as people with disabilities. In this sense, the adoption of Context Aware paradigms within auditoriums can provide adequate functionalities in order to comply with specific needs. This work is aimed at demonstrating the feasibility in enhancing user experience (e.g., improving the autonomy of disabled people) within auditorium and theatre environments, by means of an Augmented Reality (AR) device (HoloLens smart glasses) with wireless system integration. To carry out the demonstration, different elements to build AR applications are described and tested. First, an intensive measurement campaign was performed in a real auditorium in the city of Pamplona (Baluarte Congress Center) in order to evaluate the feasibility of using Wi-Fi enabled AR devices in a complex wireless propagation scenario. The results show that these environments exhibit high levels of interference, owing to the co-existence and non-coordinated operation of multiple wireless communication systems, such as on site and temporary Wi-Fi access points, wireless microphones or communications systems used by performers, staff and users. Deterministic wireless channel estimation based in volumetric 3D Ray Launching have been obtained for the complete scenario volume, in order to assess quality of service metrics. For illustration purposes, a user-friendly application to help hearing impaired people was developed and its main features were tested in the auditorium. Such an application provides users with a 3D virtual space to visualize useful multimedia content like subtitles or additional information about the show, as well as an integrated call button. © 2013 IEEE.