Falcone Lanas, Francisco

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Falcone Lanas

First Name

Francisco

person.page.departamento

Ingeniería Eléctrica, Electrónica y de Comunicación

person.page.instituteName

ISC. Institute of Smart Cities

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 2 of 2
  • PublicationOpen Access
    Wideband printed monopole antenna for application in wireless communication systems
    (IET, 2018) Alibakhshikenari, Mohammad; Virdee, Bal S.; See, Chan H.; Abd-Alhameed, Raed; Falcone Lanas, Francisco; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    Empirical results of an electrically small printed monopole antenna are described with a fractional bandwidth of 185% (115 MHz to 2.90 GHz) for return-loss better than 10 dB, peak gain and radiation efficiency at 1.45 GHz of 2.35 dBi and 78.8%, respectively. The antenna geometry can be approximated to a back-to-back triangular shaped patch structure that is excited through a common feed-line with a meander-line T-shape divider. The truncated ground-plane includes a central stub located underneath the feed-line. The impedance bandwidth of the antenna is enhanced with the inclusion of meander-line slots in the patch and four double split-ring resonators on the underside of the radiating patches. The antenna radiates approximately omni-directionally to provide coverage over a large part of very high frequency, the whole of ultrahigh frequency, the whole of L-band and some parts of S-band. The antenna has dimensions of 48.32 × 43.72 × 0.8 mm 3 , which is corresponding to the electrical size of 0.235 λ 0 × 0.211 λ 0 × 0.003 λ 0 , where λ 0 is the free-space wavelength at 1.45 GHz. The proposed low-profile low-cost antenna is suitable for application in wideband wireless communications systems.
  • PublicationOpen Access
    Dual-polarized highly folded bowtie antenna with slotted self-grounded structure for sub-6 GHz 5G applications
    (IEEE, 2021) Alibakhshikenari, Mohammad; Virdee, Bal S.; See, Chan H.; Shukla, Panchamkumar; Mansouri Moghaddam, Sadegh; Zaman, Ashraf Uz; Shafqaat, Samia; Akinsolu, Mobayode O.; Liu, Bo; Yang, Jian; Abd-Alhameed, Raed; Falcone Lanas, Francisco; Limiti, Ernesto; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación
    In this paper, a novel dual-polarized highly-folded self-grounded Bowtie antenna that is excited through I-shaped slots is proposed for applications in sub-6GHz 5G multiple-input-multiple-output (MIMO) antenna systems. The antenna consists of two pairs of folded radiation petals whose base is embedded in a double layer of FR-4 substrate with a common ground-plane which is sandwiched between the two substrate layers. The ground-plane is defected with two I-shaped slots located under the radiation elements. Each pair of radiation elements are excited through a microstrip line on the top layer with RF signal that is 180° out of phase with respect to each other. The RF signal is coupled to the pair of feedlines on the top layer through the I-shaped slots from the two microstrip feedlines on the underside of the second substrate. The proposed feed mechanism gets rid of the otherwise bulky balun. The Bowtie antenna is a compact solution with dimensions of 32 32 33.8 mm3. Measured results have verified that the antenna operates over a frequency range of 3.1-5Ghz and exhibits an average gain and antenna efficiency in the vertical and horizontal polarizations of 7.5 dBi and 82.6%, respectively.