Falcone Lanas, Francisco
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Falcone Lanas
First Name
Francisco
person.page.departamento
Ingeniería Eléctrica, Electrónica y de Comunicación
person.page.instituteName
ISC. Institute of Smart Cities
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
10 results
Search Results
Now showing 1 - 10 of 10
Publication Open Access Performance analysis of IEEE 802.15.4 compliant wireless devices for heterogeneous indoor home automation environments(Hindawi, 2012) Nazábal Urriza, Juan Antonio; López Iturri, Peio; Azpilicueta Fernández de las Heras, Leyre; Falcone Lanas, Francisco; Fernández Valdivielso, Carlos; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Gobierno de Navarra / Nafarroako GobernuaThe influence of topology as well as morphology of complex indoor scenarios in the deployment of wireless sensor networks and wireless systems applied to home and building automation systems is analyzed. The existence of loss mechanisms such as material absorption (walls, furniture, etc.) and strong multipath components as well as the increase in the number of wireless sensors within indoor scenarios increases the relevance in the configuration of the heterogeneous wireless systems. Simulation results by means of empirical-based models are compared with an in-house 3D ray launching code as well as measurement results from wireless sensor networks illustrate the strong influence of the indoor scenario in the overall performance. The use of adequate radioplanning strategies lead to optimal wireless network deployments in terms of capacity, quality of service, and reduced power consumption.Publication Open Access Analysis of bluetooth-based wireless sensor networks performance in hospital environments(MDPI, 2016) López Iturri, Peio; Led Ramos, Santiago; Aguirre Gallego, Erik; Azpilicueta Fernández de las Heras, Leyre; Serrano Arriezu, Luis Javier; Falcone Lanas, Francisco; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta ElektronikoaIn this work, a method to analyze the performance of Bluetooth-based Wireless Sensor Networks (WSN) deployed within hospital environments is presented. Due to the complexity that this kind of scenarios exhibit in terms of radio propagation and coexistence with other wireless communication systems and other potential interference sources, the deployment of WSNs becomes a complex task which requires an in-depth radio planning analysis. For that purpose, simulation results obtained with the aid of an in-house developed 3D Ray Launching code are presented. The scenarios under analysis are located at the Hospital of Navarre Complex (HNC), in the city of Pamplona. As hospitals have a wide variety of scenarios, the analysis has been carried out in different zones such as Boxes, where different medical sensors based on Bluetooth communication protocol have been deployed. The simulation results obtained have been validated with measurements within the scenario under analysis, exhibiting Bluetooth-based WSNs performance within hospital environments in terms of coverage/capacity relations. The proposed methodology can aid in obtaining optimal network configuration and hence performance of Bluetooth-based WSNs within medical/health service provision environments.Publication Open Access Radio characterization for ISM 2.4 GHz wireless sensor networks for judo monitoring applications(MDPI, 2014) López Iturri, Peio; Aguirre Gallego, Erik; Azpilicueta Fernández de las Heras, Leyre; Astrain Escola, José Javier; Villadangos Alonso, Jesús; Falcone Lanas, Francisco; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Ingeniería Matemática e Informática; Matematika eta Informatika IngeniaritzaIn this work, the characterization of the radio channel for ISM 2.4GHz Wireless Sensor Networks (WSNs) for judo applications is presented. The environments where judo activity is held are usually complex indoor scenarios in terms of radiopropagation due to their morphology, the presence of humans and the electromagnetic interference generated by personal portable devices, wireless microphones and other wireless systems used by the media. For the assessment of the impact that the topology and the morphology of these environments have on electromagnetic propagation, an in-house developed 3D ray-launching software has been used in this study. Time domain results as well as estimations of received power level have been obtained for the complete volume of a training venue of a local judo club’s facilities with a contest area with the dimensions specified by the International Judo Federation (IJF) for international competitions. The obtained simulation results have been compared with measurements, which have been carried out deploying ZigBee-compliant XBee Pro modules at presented scenario, using approved Judogis (jacket, trousers and belt). The analysis is completed with the inclusion of an in-house human body computational model. Such analysis has allowed the design and development of an in house application devoted to monitor the practice of judo, in order to aid referee activities, training routines and to enhance spectator experience.Publication Open Access Zigbee radio channel analysis in a complex vehicular environment [wireless corner](IEEE, 2014) Rajo-Iglesias, Eva; López Iturri, Peio; Aguirre Gallego, Erik; Azpilicueta Fernández de las Heras, Leyre; Garate Fernández, Uxue; Falcone Lanas, Francisco; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta ElektronikoaIn this paper, the influence of topology and morphology of a particularly complex scenario for the deployment of ZigBee wireless sensor networks is analyzed. This complex scenario is a car. The existence of loss mechanisms such as material absorption (seats, dashboard, etc.) and strong multipath components due to the great number of obstacles and the metallic environment (bodywork), as well as the growing demand for wireless systems within a vehicle emphasizes the importance of the configuration of the heterogeneous intra-car wireless systems. Measurement results as well as simulation results by means of an in-house 3D ray launching algorithm illustrate the strong influence of this complex scenario in the overall performance of the intra-car wireless sensor network. Results also show that ZigBee is a viable technology for successfully deploying intra-car wireless sensor networks.Publication Open Access Analysis of radio wave propagation for ISM 2.4GHz wireless sensor networks in inhomogeneous vegetation environments(2014) Azpilicueta Fernández de las Heras, Leyre; López Iturri, Peio; Aguirre Gallego, Erik; Astrain Escola, José Javier; Villadangos Alonso, Jesús; Falcone Lanas, Francisco; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Ingeniería Matemática e Informática; Matematika eta Informatika IngeniaritzaThe use of wireless networks has been extended in an exponential growing due to the improvement in terms of battery life and low consumption of the devices. However, it is highly important to conduct previous radio propagation analysis when deploying a wireless sensor network. These studies are necessary to perform an estimation of the range coverage, in order to optimize the distance between devices in an actual network deployment. In this work, the radio channel characterization for ISM 2.4GHz Wireless Sensor Networks (WSN) in an inhomogeneous vegetation environment has been analyzed. The impact of topology as well as morphology of the environment is assessed by means of an in-house developed 3D Ray Launching code, to emulate the realistic operation in the framework of the scenario. Experimental results gathered from a measurements campaign conducted by deploying a ZigBee Wireless Sensor Network, are analyzed and compared with simulations in this paper. The scenario where this network is intended to operate is a combination of buildings and diverse vegetation species. To gain insight in the effects of radio propagation, a simplified vegetation model has been developed, considering the material parameters and simplified geometry embedded in the simulation scenario. The use of deterministic tools can aid to know the impact of the topological influence in the deployment of the optimal Wireless Sensor Network in terms of capacity, coverage and energy consumption, making the use of these systems attractive for multiple applications in inhomogeneous vegetation environments.Publication Open Access Analysis of wireless sensor network topology and estimation of optimal network deployment by deterministic radio channel characterization(MDPI, 2015) Aguirre Gallego, Erik; López Iturri, Peio; Azpilicueta Fernández de las Heras, Leyre; Astrain Escola, José Javier; Villadangos Alonso, Jesús; Falcone Lanas, Francisco; Ingeniería Eléctrica y Electrónica; Ingeniería Matemática e Informática; Ingeniaritza Elektrikoa eta Elektronikoa; Matematika eta Informatika IngeniaritzaOne of the main challenges in the implementation and design of context-aware scenarios is the adequate deployment strategy for Wireless Sensor Networks (WSNs), mainly due to the strong dependence of the radiofrequency physical layer with the surrounding media, which can lead to non-optimal network designs. In this work, radioplanning analysis for WSN deployment is proposed by employing a deterministic 3D ray launching technique in order to provide insight into complex wireless channel behavior in context-aware indoor scenarios. The proposed radioplanning procedure is validated with a testbed implemented with a Mobile Ad Hoc Network WSN following a chain configuration, enabling the analysis and assessment of a rich variety of parameters, such as received signal level, signal quality and estimation of power consumption. The adoption of deterministic radio channel techniques allows the design and further deployment of WSNs in heterogeneous wireless scenarios with optimized behavior in terms of coverage, capacity, quality of service and energy consumption.Publication Open Access Implementation of wireless sensor network architecture for interactive shopping carts to enable context-aware commercial areas(IEEE, 2016) López Iturri, Peio; Azpilicueta Fernández de las Heras, Leyre; Astrain Escola, José Javier; Aguirre Gallego, Erik; Salinero, Eduardo; Villadangos Alonso, Jesús; Falcone Lanas, Francisco; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Ingeniería Matemática e Informática; Matematika eta Informatika Ingeniaritza; Institute of Smart Cities - ISCAn interactive shopping cart to enable context aware environments within large commercial areas is presented. A wireless sensor network was designed, with specific nodes embedded within the shopping carts and infrastructure nodes in the shopping area. Due to the complexity of wireless propagation, given the large amount of obstacles and the inclusion of users, an in house deterministic method based on 3D Ray Launching was employed, providing results in terms of adequate transceiver deployment to minimize interference, energy consumption and maximize data throughput. The proposed system was tested in a real commercial scenario, with the implementation of an ad-hoc monitor shopping application, exhibiting successful detection rates in order of 99%. The proposed systems provides an interactive shopping experience for users as well as for commercial managers.Publication Open Access Evaluation of deployment challenges of wireless sensor networks at signalized intersections(MDPI, 2016) Azpilicueta Fernández de las Heras, Leyre; López Iturri, Peio; Aguirre Gallego, Erik; Martínez Carrasco, Carlos; Astrain Escola, José Javier; Villadangos Alonso, Jesús; Falcone Lanas, Francisco; Ingeniaritza Elektrikoa eta Elektronikoa; Matematika eta Informatika Ingeniaritza; Institute of Smart Cities - ISC; Ingeniería Eléctrica y Electrónica; Ingeniería Matemática e InformáticaWith the growing demand of Intelligent Transportation Systems (ITS) for safer and more efficient transportation, research on and development of such vehicular communication systems have increased considerably in the last years. The use of wireless networks in vehicular environments has grown exponentially. However, it is highly important to analyze radio propagation prior to the deployment of a wireless sensor network in such complex scenarios. In this work, the radio wave characterization for ISM 2.4 GHz and 5 GHz Wireless Sensor Networks (WSNs) deployed taking advantage of the existence of traffic light infrastructure has been assessed. By means of an in-house developed 3D ray launching algorithm, the impact of topology as well as urban morphology of the environment has been analyzed, emulating the realistic operation in the framework of the scenario. The complexity of the scenario, which is an intersection city area with traffic lights, vehicles, people, buildings, vegetation and urban environment, makes necessary the channel characterization with accurate models before the deployment of wireless networks. A measurement campaign has been conducted emulating the interaction of the system, in the vicinity of pedestrians as well as nearby vehicles. A real time interactive application has been developed and tested in order to visualize and monitor traffic as well as pedestrian user location and behavior. Results show that the use of deterministic tools in WSN deployment can aid in providing optimal layouts in terms of coverage, capacity and energy efficiency of the network.Publication Open Access Implementation and analysis of ISM 2.4 GHz wireless sensor network systems in judo training venues(MDPI, 2016) López Iturri, Peio; Aguirre Gallego, Erik; Azpilicueta Fernández de las Heras, Leyre; Astrain Escola, José Javier; Villadangos Alonso, Jesús; Falcone Lanas, Francisco; Ingeniaritza Elektrikoa eta Elektronikoa; Institute of Smart Cities - ISC; Ingeniería Eléctrica y ElectrónicaIn this work, the performance of ISM 2.4 GHz Wireless Sensor Networks (WSNs) deployed in judo training venues is analyzed. Judo is a very popular martial art, which is practiced by thousands of people not only at the competition level, but also as part of physical education programs at different school levels. There is a great variety of judo training venues, and each one has specific morphological aspects, making them unique scenarios in terms of radio propagation due to the presence of furniture, columns, equipment and the presence of human beings, which is a major issue as the person density within this kind of scenarios could be high. Another key aspect is the electromagnetic interference created by other wireless systems, such as WiFi or other WSNs, which make the radio planning a complex task in terms of coexistence. In order to analyze the impact of these features on the radio propagation and the performance of WSNs, an in-house developed 3D ray launching algorithm has been used. The obtained simulation results have been validated with a measurement campaign carried out in the sport facilities of the Public University of Navarre. The analysis is completed with the inclusion of an application designed to monitor biological constants of judokas, aimed to improve their training procedures. The application, that allows the simultaneous monitoring of multiple judokas (collective workouts) minimizing the efforts of the coach and medical supervisor, is based on commercial off-the-shelf products. The presented assessment of the presence of interfering wireless systems and the presence of human beings within judo training venues shows that an in-depth radio planning is required as these issues can have a great impact in the overall performance of a ISM 2.4 GHz WSN, affecting negatively the potential applications supported by wireless channel.Publication Open Access Impact of high power interference sources in planning and deployment of wireless sensor networks and devices in the 2.4 GHz frequency band in heterogeneous environments(MDPI, 2012) López Iturri, Peio; Nazábal Urriza, Juan Antonio; Azpilicueta Fernández de las Heras, Leyre; Rodríguez Ulibarri, Pablo; Beruete Díaz, Miguel; Fernández Valdivielso, Carlos; Falcone Lanas, Francisco; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Gobierno de Navarra / Nafarroako GobernuaIn this work, the impact of radiofrequency radiation leakage from microwave ovens and its effect on 802.15.4 ZigBee-compliant wireless sensor networks operating in the 2.4 GHz Industrial Scientific Medical (ISM) band is analyzed. By means of a novel radioplanning approach, based on electromagnetic field simulation of a microwave oven and determination of equivalent radiation sources applied to an in-house developed 3D ray launching algorithm, estimation of the microwave oven's power leakage is obtained for the complete volume of an indoor scenario. The magnitude and the variable nature of the interference is analyzed and the impact in the radio link quality in operating wireless sensors is estimated and compared with radio channel measurements as well as packet measurements. The measurement results reveal the importance of selecting an adequate 802.15.4 channel, as well as the Wireless Sensor Network deployment strategy within this type of environment, in order to optimize energy consumption and increase the overall network performance. The proposed method enables one to estimate potential interference effects in devices operating within the 2.4 GHz band in the complete scenario, prior to wireless sensor network deployment, which can aid in achieving the most optimal network topology.