Falcone Lanas, Francisco

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Falcone Lanas

First Name

Francisco

person.page.departamento

Ingeniería Eléctrica, Electrónica y de Comunicación

person.page.instituteName

ISC. Institute of Smart Cities

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 3 of 3
  • PublicationOpen Access
    Meta-surface wall suppression of mutual coupling between microstrip patch antenna arrays for THz-band applications
    (EMW Publishing, 2018) Alibakhshikenari, Mohammad; Virdee, Bal S.; Shukla, Panchamkumar; See, Chan H.; Falcone Lanas, Francisco; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    This paper presents a novel 2D meta-surface wall to increase the isolation between microstrip patch radiators in an antenna array that is operating in the teraherz (THz) band of 139-141 GHz for applications including communications, medical and security screening systems. The meta-surface unit-cell comprises conjoined twin 'Y-shape' microstrip structures, which are inter-digitally interleaved together to create the meta-surface wall. The proposed meta-surface wall is free of via holes and defected ground-plane hence easing its fabrication. The meta-surface wall is inserted tightly between the radiating elements to reduce surface wave mutual coupling. For best isolation performance the wall is oriented orthogonal to the patch antennas. The antenna array exhibits a gain of 9.0 dBi with high isolation level of less than -63 dB between transmit and receive antennas in the specified THz-band. The proposed technique achieves mutual coupling suppression of more than 10 dB over a much wider frequency bandwidth (2 GHz) than achieved to date. With the proposed technique the edge-to-edge gap between the transmit and receive patch antennas can be reduced to 2.5 mm. Dimensions of the transmit and receive patch antennas are 5×5 mm2 with ground-plane size of 9×4.25 mm2 when being constructed on a conventional lossy substrate with thickness of 1.6 mm.
  • PublicationOpen Access
    Miniaturization trends in substrate integrated waveguide (SIW) filters: a review
    (IEEE, 2020) Iqbal, Amjad; Tiang, Jun Jiat; Wong, Sew Kin; Alibakhshikenari, Mohammad; Falcone Lanas, Francisco; Limiti, Ernesto; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación
    This review provides an overview of the technological advancements and miniaturization trends in Substrate Integrated Waveguide (SIW) filters. SIW is an emerging planar waveguide structure for the transmission of electromagnetic (EM) waves. SIW structure consists of two parallel copper plates which are connected by a series of vias or continuous perfect electric conductor (PEC) channels. SIW is a suitable choice for designing and developing the microwave and millimetre-wave (mm-Wave) radio frequency (RF) components: because it has compact dimensions, low insertion loss, high-quality factor (QF), and can easily integrate with planar RF components. SIW technology enjoys the advantages of the classical bulky waveguides in a planar structure; thus is a promising choice for microwave and mm-Wave RF components. © 2013 IEEE.
  • PublicationOpen Access
    New approach to suppress mutual coupling between longitudinal-slotted arrays based on SIW antenna loaded with metal-fences working on VHF/UHF frequency-bands: study, investigation, and principle
    (IEEE, 2019) Alibakhshikenari, Mohammad; Virdee, Bal S.; Khalily, Mohsen; See, Chan H.; Abd-Alhameed, Raed; Falcone Lanas, Francisco; Limiti, Ernesto; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    In this work it is demonstrated that substrate integrated waveguide longitudinal slotted array antenna (SIWLSAA) which is loaded with metal fences exhibits high-isolation across VHF/UHF bands. A reference SIWLSAA used for comparison purpose comprises of 3×6 slotted arrays constructed on the top and bottom sides of the FR-4 lossy substrate has maximum isolation of -63 dB between its radiation slots. Improvement in isolation is demonstrated using a simple new technique based on inserting a metal fence between each row of slot arrays. The resulting isolation is shown to be is better than -83 dB across 200 MHz to 1.0 GHz with gain greater than 1.5 dBi, and side-lobe level less than - 40 dB. The proposed SIWLSAA is compact and has dimensions of 40×10×5 mm 3 (0.026?×0.006?×0.0020) where ? is 200 MHz. The proposed structure should find application in multiple-input multiple-output (MIMO) and radar systems.