Falcone Lanas, Francisco
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Falcone Lanas
First Name
Francisco
person.page.departamento
Ingeniería Eléctrica, Electrónica y de Comunicación
person.page.instituteName
ISC. Institute of Smart Cities
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
4 results
Search Results
Now showing 1 - 4 of 4
Publication Open Access Electroinductive waves in chain of complementary metamaterial elements(AIP Publishing, 2006) Beruete Díaz, Miguel; Falcone Lanas, Francisco; Freire, M. J.; Marqués, R.; Baena, J.D.; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta ElektronikoaElectronductive waves supported by chains of resonators drilled on a metallic plate are presented. Propagation of energy comes as a consequence of the electric coupling between these resonators. Therefore, these waves are termed as electroinductive waves. They can be interpreted as the dual counterpart of the so-called magnetoinductive waves, which are due to the mutual inductances along chains of resonators. In order to show their existence, some electromagnetic simulations and experiments have been carried out, using as resonators the complementary particle of the split ring resonator. The reported result opens the way to a high variety of applications in one- and two-dimensional devices, such as transducers, delay lines, bends, power dividers, couplers, antennas, lenses, etc.Publication Open Access Metamaterial inspired electromagnetic bandgap filter for ultra-wide stopband screening devices of electromagnetic interference(Springer, 2023) Al-Hasan, Muath; Alibakhshikenari, Mohammad; Virdee, Bal S.; Sharma, Richa; Iqbal, Amjad; Althuwayb, Ayman Abdulhadi; Falcone Lanas, Francisco; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenPresented here is a reactively loaded microstrip transmission line that exhibit an ultra-wide bandgap. The reactive loading is periodically distributed along the transmission line, which is electromagnetically coupled. The reactive load consists of a circular shaped patch which is converted to a metamaterial structure by embedded on it two concentric slit-rings. The patch is connected to the ground plane with a via-hole. The resulting structure exhibits electromagnetic bandgap (EBG) properties. The size and gap between the slit-rings dictate the magnitude of the reactive loading. The structure was frst theoretically modelled to gain insight of the characterizing parameters. The equivalent circuit was verifed using a full-wave 3D electromagnetic (EM) solver. The measured results show the proposed EBG structure has a highly sharp 3-dB skirt and a very wide bandgap, which is substantially larger than any EBG structure reported to date. The bandgap rejection of the single EBG unit-cell is better than − 30 dB, and the fve element EBG unit-cell is better than − 90 dB. The innovation can be used in various applications such as biomedical applications that are requiring sharp roll-of rates and high stopband rejection thus enabling efcient use of the EM spectrum. This can reduce guard band and thereby increase the channel capacity of wireless systems.Publication Open Access Metamaterials and their application in the performance enhancement of reconfigurable antennas: a review(MDPI, 2023) Hussain, Musa; Awan, Wahaj Abbas; Alzaidi, Mohammed S.; Hussain, Niamat; Ali, Esraa Mousa; Falcone Lanas, Francisco; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenMetamaterials exhibit properties in terms of subwavelength operation or phase manipulation, among others, that can be used in a variety of applications in 5G communication systems. The future and current 5G devices demand high efficiency, high data rate, computational capabilities, cost-effectiveness, compact size, and low power consumption. This variation and advancement are possible when the antenna design is revised to operate over wideband, high gain, and multiband and has characteristics of compact size, reconfiguration, absorption, and simple ease of fabrication. The materials loaded with antennas or, in the same cases, without antennas, offer the aforementioned characteristics to bring advancement in order to facilitate users. A number of works on designing metasurfaces capable of improving bandwidth, gain efficiency, and reducing the size and cost of antennas are available in the literature for this purpose. Not only are these applications possible, but the intelligent metasurfaces are also designed to obtain reconfiguration in terms of frequency and polarization. The number of absorbers loaded with metamaterials is also designed to improve the absorption percentage used for radar applications. Thus, in this paper, the general overview of different types of metamaterials and their role in performance enhancement and application in 5G and 6G communication systems is discussed.Publication Open Access Experimental demonstration of metamaterials application for mitigating scan blindness in phased array antennas(EDP Sciences, 2016) Rodríguez Ulibarri, Pablo; Crépin, Thomas; Martel, Cédric; Boust, Fabrice; Falcone Lanas, Francisco; Loecker, Claudius; Herbertz, Kai; Bertuch, Thomas; Dousset, Thierry; Martinaud, Jean-Paul; Maci, Stefano; Marcotegui Iturmendi, José Antonio; Beruete Díaz, Miguel; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta ElektronikoaThis paper presents two metamaterial-inspired solutions to mitigate the scan blindness effects in a phased array antenna. In the first solution, portions of a bed of nails are introduced in the radome to prevent the excitation of surface waves. In the second solution, a superstrate metasurface is designed to synthesize a permittivity tensor optimized to achieve a wide angle impedance matching. In both approaches, the numerical simulations are successfully compared with measurements of a phased array antenna prototype with 100 elements. The wire medium-based solution reveals an effective way for reducing the blind-spot in a wide bandwidth, while the metaradome has been found less suitable for the same purpose.