Falcone Lanas, Francisco

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Falcone Lanas

First Name

Francisco

person.page.departamento

Ingeniería Eléctrica, Electrónica y de Comunicación

person.page.instituteName

ISC. Institute of Smart Cities

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 3 of 3
  • PublicationOpen Access
    A review of IoT sensing applications and challenges using RFID and wireless sensor networks
    (MDPI, 2020) Landaluce, Hugo; Arjona, Laura; Perallos Ruiz, Asier; Falcone Lanas, Francisco; Angulo Martínez, Ignacio; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    Radio frequency identification (RFID) and wireless sensors networks (WSNs) are two fundamental pillars that enable the Internet of Things (IoT). RFID systems are able to identify and track devices, whilst WSNs cooperate to gather and provide information from interconnected sensors. This involves challenges, for example, in transforming RFID systems with identification capabilities into sensing and computational platforms, as well as considering them as architectures of wirelessly connected sensing tags. This, together with the latest advances in WSNs and with the integration of both technologies, has resulted in the opportunity to develop novel IoT applications. This paper presents a review of these two technologies and the obstacles and challenges that need to be overcome. Some of these challenges are the efficiency of the energy harvesting, communication interference, fault tolerance, higher capacities to handling data processing, cost feasibility, and an appropriate integration of these factors. Additionally, two emerging trends in IoT are reviewed: the combination of RFID and WSNs in order to exploit their advantages and complement their limitations, and wearable sensors, which enable new promising IoT applications.
  • PublicationOpen Access
    An antenna array utilizing slotted conductive slab: inspired by metasurface and defected ground plane techniques for flexible electronics and sensors operating in the millimeter-wave and terahertz spectrum
    (Springer, 2023) Ali, Esraa Mousa; Alibakhshikenari, Mohammad; Virdee, Bal S.; Kouhalvandi, Lida; Livreri, Patrizia; Falcone Lanas, Francisco; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    This paper describes an innovative design of an antenna array that is metamaterial inspired using sub-wavelength slots and defected ground structure (DGS) for operation over millimeter-wave and terahertz (THz) spectrum. The proposed antenna array consists of a 2 × 4 array of conductive boxes on which are implemented rectangular slots. The presence of dielectric slots introduces resonant modes within the structure. These resonant modes result in enhancing the electromagnetic fields within the slots, which radiate energy into free space. The resonant frequencies and radiation patterns depend on the specific geometry of the slots and the dielectric properties. The antenna array is excited through a single microstrip line. The radiating elements in the array are interconnected to each other with a microstrip line. Unwanted mutual coupling between the radiating elements can degrade the performance of the antenna. This was mitigated by defecting the ground plane with rectangular slots. It is shown that this technique can enhance the array¿s reflection coefficient over a wider bandwidth. The array was constructed on polyimide substrate having dielectric constant of 3.5 and thickness of 20 ¿m. The design was modelled, and its performance verified using an industry standard electromagnetic package by CST Studio Suite. The proposed array antenna has dimensions of 20 × 10 mm2 and operates between 80 and 200 GHz for radiation gain better than 4 dBi and efficiency above 55%. The peak radiation gain and efficiency are 7.5 dBi and 75% at 91 GHz, respectively. The operational frequency range of the array corresponds to a fractional bandwidth of 85.71%.
  • PublicationOpen Access
    Diffuse-scattering-informed geometric channel modeling for THz wireless communications systems
    (IEEE, 2023) Azpilicueta Fernández de las Heras, Leyre; Schultze, Alper; Celaya Echarri, Mikel; Rodríguez Corbo, Fidel Alejandro; Constantinou, Costas; Shubair, Raed M.; Falcone Lanas, Francisco; Navarro Cía, Miguel; Estadística, Informática y Matemáticas; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Estatistika, Informatika eta Matematika; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    Surpassing 100 Gbps data throughput is a key objective and an active area of research for sixth-generation (6G) wireless networks that can only be met by exploiting the TeraHertz (THz) frequency band (0.3 - 10 THz). THz channel modeling faces new challenges given the emerging relevance of scattering and molecular absorption in this frequency range as well as the lack of a reliable library of material properties. In this work, we address these challenges by measuring systematically the dielectric properties of 27 common building and office materials and reporting an in-house three-dimensional ray-launching (3D-RL) algorithm that uses the created material library and accounts for rough surface scattering and atmospheric attenuation. In order to validate the proposed algorithm, a channel sounder measurement campaign has been performed in a typical indoor environment at 300 GHz. Simulations and measurements show good agreement, demonstrating the need for modelling scattering and atmospheric absorption in the THz band. The proposed channel model approach enables scenarios at THz frequencies to be investigated by simulation, providing a relevant knowledge for the development of ultra-high-speed wireless communication systems.