Person: Gimena Ramos, Faustino
Loading...
Email Address
person.page.identifierURI
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Gimena Ramos
First Name
Faustino
person.page.departamento
Ingeniería
person.page.instituteName
IS-FOOD. Research Institute on Innovation & Sustainable Development in Food Chain
ORCID
0000-0001-7912-9082
person.page.upna
485
Name
4 results
Search Results
Now showing 1 - 4 of 4
Publication Open Access Curved beam through matrices associated with support conditions(2020) Gimena Ramos, Faustino; Gonzaga Vélez, Pedro; Valdenebro García, José Vicente; Goñi Garatea, Mikel; Reyes-Rubiano, Lorena Silvana; Ingeniería; IngeniaritzaPublication Open Access Caracterización del modelo HEC-HMS en la cuenca de río Arga en Pamplona y su aplicación a cinco avenidas significativas(Universidad Católica de la Santísima Concepción (Chile), 2012) López Rodríguez, José Javier; González Moreno, Miguel Ángel; Scaini, Anna; Goñi Garatea, Mikel; Valdenebro García, José Vicente; Gimena Ramos, Faustino; Proyectos e Ingeniería Rural; Landa Ingeniaritza eta ProiektuakPamplona es una ciudad que es atravesada por el río Arga a lo largo de una llanura aluvial, que es susceptible de inundaciones cuando se producen avenidas de cierta magnitud. Ante esta situación es importante contar con un modelo hidrológico que permita simular los caudales del río que atraviesa el núcleo urbano, a partir de los datos de los distintos pluviómetros existentes en la cuenca, y que sirva para alimentar a modelos hidráulicos que permitan definir las zonas inundables asociadas a distintos niveles de probabilidad. Con esta finalidad, se ha montado y caracterizado el modelo HEC-HMS de la cuenca del río Arga en Pamplona, y posteriormente, se ha aplicado a las cinco avenidas más significativas de los últimos años, de las que se disponen de los mínimos datos de caudal y precipitación necesarios. HEC-HMS es un modelo lluviaescorrentía que se basa en estructurar la cuenca origen en subcuencas asociadas a los cauces de la red fluvial. El flujo base en los hidrogramas observados se ha estimado mediante el filtro de Eckhardt. Después de realizar un análisis de sensibilidad de los parámetros inciertos del modelo, en el que se ha observado que el más sensible es el CN, se ha aplicado el modelo con los datos de las series de precipitación de las estaciones automáticas, y con los datos de las automáticas más las manuales, en este segundo caso los resultados han mejorado significativamente obteniéndose resultados satisfactorios.Publication Open Access Alternative approach to the buckling phenomenon by means of a second order incremental analysis(Springer Nature, 2023) Gimena Ramos, Faustino; Goñi Garatea, Mikel; Gonzaga Vélez, Pedro; Valdenebro García, José Vicente; Ingeniería; IngeniaritzaThis article addresses the problem of determining the solicitation and deformation of beams with geometric imperfection, also called real beams under a compression action. This calculation is performed by applying the Finite Transfer Method numerical procedure under first-order effects with the entire compression action applied instantaneously and applying the action gradually under second-order effects. The results obtained by this procedure for real sinusoidal or parabolic beams are presented and compared. To verify the potential of the numerical procedure, the first and second-order effects of a beam with variable section are presented. New analytical formulations of the bending moment and the transverse deformation in the beam with sinusoidal imperfection subjected to compression are also obtained, under first and second-order analysis. The maximum failure load of the beams is determined based on their initial deformation. The results of solicitation and deformation of the real beam under compression are compared, applying the analytical expressions obtained and the numerical procedure cited. The beams under study are profiles with different geometric characteristics, which shows that it is possible to obtain maximum failure load results by varying the relationships between lengths, areas and slenderness. The increase in second-order bending moments causes the failure that originates in the beam, making it clear that this approach reproduces the buckling phenomenon. The article demonstrates that through the Finite Transfer Method the calculation of first and second-order effects can be addressed in beams of any type of directrix and of constant or variable section.Publication Embargo Application of the elastic curve equation for the verification of structures assimilable to continuous beams(World Scientific Publishing, 2024) Gimena Ramos, Faustino; Gonzaga Vélez, Pedro; Goñi Garatea, Mikel; Valdenebro García, José Vicente; Senosiain Carasusan, María Aranzazu; Ingeniería; Ingeniaritza; Institute of Smart Cities - ISC; Institute on Innovation and Sustainable Development in Food Chain - ISFOODThis paper analyzes the beam under isolated and uniform loads, extending this calculation towards the structural type of the continuous beam, by means of a single expression of the elastic curve. A general expression of the bending is proposed, deduced by integrating the different differential equations of the elastica, associated to each section between discontinuities produced by the loads. In this paper, support reactions are incorporated into the load system. Therefore, the continuous beam is understood as a bar made up of sections aligned between discontinuities. With this, the isostatic beam, the hyperstatic beam and the continuous beam can be treated by means of the same integrated expression of the displacement, also called the Macaulay method. Equivalent notations are provided to the expression of bending for the cases of traction-compression and torsion, obtained through the same reasoning and sequence of operations. The formulation of elastic type and the associated operations shown allow us to cover the analysis of the generic structural form, which we can define as the beam of any number of spans, or continuous beam of >n spans. The load system is also generalized, being able to contemplate loads of a different nature and form of distribution, both static and mobile. The examples that have been developed always provide analytical results of solicitation and deformation. They intend to explain the systematic path followed from the approach of the structural problem to its mathematical modelling, and the resolution procedure developed to obtain useful values for the structural verification. In these examples, an increasing degree of complexity and generalization has been followed. The expressions obtained are validated by comparing them with those that are usual in the structural literature for the same or similar problems.