Person: Gimena Ramos, Faustino
Loading...
Email Address
person.page.identifierURI
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Gimena Ramos
First Name
Faustino
person.page.departamento
Ingeniería
person.page.instituteName
IS-FOOD. Research Institute on Innovation & Sustainable Development in Food Chain
ORCID
0000-0001-7912-9082
person.page.upna
485
Name
1 results
Search Results
Now showing 1 - 1 of 1
Publication Embargo Application of the elastic curve equation for the verification of structures assimilable to continuous beams(World Scientific Publishing, 2024) Gimena Ramos, Faustino; Gonzaga Vélez, Pedro; Goñi Garatea, Mikel; Valdenebro García, José Vicente; Senosiain Carasusan, María Aranzazu; Ingeniería; Ingeniaritza; Institute of Smart Cities - ISC; Institute on Innovation and Sustainable Development in Food Chain - ISFOODThis paper analyzes the beam under isolated and uniform loads, extending this calculation towards the structural type of the continuous beam, by means of a single expression of the elastic curve. A general expression of the bending is proposed, deduced by integrating the different differential equations of the elastica, associated to each section between discontinuities produced by the loads. In this paper, support reactions are incorporated into the load system. Therefore, the continuous beam is understood as a bar made up of sections aligned between discontinuities. With this, the isostatic beam, the hyperstatic beam and the continuous beam can be treated by means of the same integrated expression of the displacement, also called the Macaulay method. Equivalent notations are provided to the expression of bending for the cases of traction-compression and torsion, obtained through the same reasoning and sequence of operations. The formulation of elastic type and the associated operations shown allow us to cover the analysis of the generic structural form, which we can define as the beam of any number of spans, or continuous beam of >n spans. The load system is also generalized, being able to contemplate loads of a different nature and form of distribution, both static and mobile. The examples that have been developed always provide analytical results of solicitation and deformation. They intend to explain the systematic path followed from the approach of the structural problem to its mathematical modelling, and the resolution procedure developed to obtain useful values for the structural verification. In these examples, an increasing degree of complexity and generalization has been followed. The expressions obtained are validated by comparing them with those that are usual in the structural literature for the same or similar problems.