Person:
Gimena Ramos, Faustino

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Gimena Ramos

First Name

Faustino

person.page.departamento

Ingeniería

person.page.instituteName

IS-FOOD. Research Institute on Innovation & Sustainable Development in Food Chain

ORCID

0000-0001-7912-9082

person.page.upna

485

Name

Search Results

Now showing 1 - 4 of 4
  • PublicationOpen Access
    The transformation of a trade fair and exhibition centre into a field hospital for COVID-19 patients via multi-utility tunnels
    (Elsevier, 2021) Valdenebro García, José Vicente; Gimena Ramos, Faustino; López Rodríguez, José Javier; Ingeniería; Ingeniaritza
    This article exposes, through the case study of the IFEMA trade fair and exhibition centre in Madrid (Spain), the benefits of using a multi-utility tunnels (MUTs) system as a smart and sustainable solution for the distribution of utility networks in buildings, or in complexes made up of several buildings, to enable their quick and continuous adaptation. The saturation of the health system in the capital of Spain, motivated by the COVID-19 pandemic, forced the authorities in Madrid to improvise an emergency centre in this building. The multi-utility tunnels system was the key enabling element to deploy the necessary networks, including those for medical gases, to convert several exhibition halls into a field hospital with a maximum capacity of 5000 conventional beds and another 500 Intensive Care Unit beds, in just 100 h.
  • PublicationOpen Access
    Alternative approach to the buckling phenomenon by means of a second order incremental analysis
    (Springer Nature, 2023) Gimena Ramos, Faustino; Goñi Garatea, Mikel; Gonzaga Vélez, Pedro; Valdenebro García, José Vicente; Ingeniería; Ingeniaritza
    This article addresses the problem of determining the solicitation and deformation of beams with geometric imperfection, also called real beams under a compression action. This calculation is performed by applying the Finite Transfer Method numerical procedure under first-order effects with the entire compression action applied instantaneously and applying the action gradually under second-order effects. The results obtained by this procedure for real sinusoidal or parabolic beams are presented and compared. To verify the potential of the numerical procedure, the first and second-order effects of a beam with variable section are presented. New analytical formulations of the bending moment and the transverse deformation in the beam with sinusoidal imperfection subjected to compression are also obtained, under first and second-order analysis. The maximum failure load of the beams is determined based on their initial deformation. The results of solicitation and deformation of the real beam under compression are compared, applying the analytical expressions obtained and the numerical procedure cited. The beams under study are profiles with different geometric characteristics, which shows that it is possible to obtain maximum failure load results by varying the relationships between lengths, areas and slenderness. The increase in second-order bending moments causes the failure that originates in the beam, making it clear that this approach reproduces the buckling phenomenon. The article demonstrates that through the Finite Transfer Method the calculation of first and second-order effects can be addressed in beams of any type of directrix and of constant or variable section.
  • PublicationOpen Access
    Curved beam through matrices associated with support conditions
    (2020) Gimena Ramos, Faustino; Gonzaga Vélez, Pedro; Valdenebro García, José Vicente; Goñi Garatea, Mikel; Reyes-Rubiano, Lorena Silvana; Ingeniería; Ingeniaritza
  • PublicationOpen Access
    Analysis of the effect of climate change on the characteristics of rainfall in Igeldo-Gipuzkoa (Spain)
    (MDPI, 2023) López Rodríguez, José Javier; Ayuso-Muñoz, José Luis; Goñi Garatea, Mikel; Gimena Ramos, Faustino; Ingeniería; Ingeniaritza
    In recent years, numerous studies have been carried out on changes in the temperature and precipitation regimes and in the frequency of the extreme events that are a result of climate change. While there is evidence of an increase in temperature at a global level, this globality does not seem to occur with precipitation. The Igeldo weather station (San Sebastian) has one of the longest recorded rainfall intensity series in Spain and can be considered as representative of the Cantabrian coast. This circumstance makes it the ideal place to analyse the trend of the pluviometric regime of this area, and this was precisely the objective of this study. A total of 165 series of pluviometric parameters were obtained to characterise the pluviometric regime. The Mann–Kendall and Spearman tests were applied to evaluate the trends of the different parameters, and the Pettitt test was applied to detect the existence of change points. In all the series, it was proven that there were no significant trends or change points. Significant increasing trends were only detected in the series of maximum winter precipitation. In general terms, it can be concluded that the precipitation regime in Igeldo is quite stationary in the context of climate change.