Aginaga García, Jokin

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Aginaga García

First Name

Jokin

person.page.departamento

Ingeniería

person.page.instituteName

ISC. Institute of Smart Cities

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 7 of 7
  • PublicationOpen Access
    Inertia transfer concept based general method for the determination of the base inertial parameters
    (Springer, 2015) Ros Ganuza, Javier; Plaza Puértolas, Aitor; Iriarte Goñi, Xabier; Aginaga García, Jokin; Ingeniería; Ingeniaritza; Institute of Smart Cities - ISC
    This paper presents a new algorithm to obtain the symbolic expressions of any of the possible base inertial parameter sets of a multibody system. Based on the ¿inertia transfer concept¿, a procedure is proposed to write a system of equations from which the base parameters are obtained. This leads to an automatizable and general method to obtain these parameters symbolically. The method can also be used to determine base inertial parameters numerically, and it can be even more straightforward to implement and use than the standard numerical methods. An example is presented to illustrate in detail the application of the algorithm, and to compare its results with those of a standard numerical procedure. The symbolic base inertial parameters can be of interest in symbolic simplification of the dynamic equations for real-time applications, design optimization, dynamic parameter identification, model reduction, and in other fields.
  • PublicationOpen Access
    Determination of the symbolic base inertial parameters of planar mechanisms
    (Elsevier, 2017) Iriarte Goñi, Xabier; Ros Ganuza, Javier; Mata, Vicente; Aginaga García, Jokin; Ingeniería Mecánica, Energética y de Materiales; Mekanika, Energetika eta Materialen Ingeniaritza
    The inertial information of a planar mechanical system is characterised using 4 inertial parameters per solid. Due to the kinematic constraints, this parametrisation turns out be redundant. In order to reduce the computational cost of the model and make it possible to estimate its inertial parameters, the model is usually written in terms of a minimum set of inertial parameters called base inertial parameters. These parameters completely determine the dynamics of motion (kinetics) of a mechanism and, since their contributions are independent to each other, their actual values can be estimated experimentally. The base inertial parameters expressions can be written as a linear combination of the inertial parameters and determining their symbolic expressions provides a deeper insight into their physical meaning. This paper presents a new algorithm to determine the symbolic expressions of the base inertial parameters of planar mechanisms. The approach is based on a very well known numerical method to obtain the base inertial parameters and on the fact that these parameters belong to a class of functions that lets us search for symbolic expressions matching with them. Since the symbolic expressions are a function of the geometric constants of the system, the presented algorithm constitutes a very valuable tool in design optimisation and it is also very interesting in dynamic parameter estimation, model reduction and other fields.
  • PublicationOpen Access
    Optimal strain-gauge placement for mechanical load estimation in circular cross-section shafts
    (Elsevier, 2021) Iriarte Goñi, Xabier; Aginaga García, Jokin; Gainza González, Gorka; Ros Ganuza, Javier; Bacaicoa Díaz, Julen; Institute of Smart Cities - ISC
    The customary electrical circuit configuration for estimating mechanical loads with strain gauges uses Wheatstone full- or half-bridges. For each mechanical load to be estimated, a dedicated bridge with two or four gauges has to be mounted, placing the strain gauges in specific configurations along the measured part. In this paper the strain of individual gauges is measured by means of quarter-bridges and all the mechanical loads exerted on a shaft are estimated jointly as different linear combinations of the strains of the gauges. The location of the gauges on the shaft are determined optimally and the influence of apparent strain related to temperature variations is avoided. Results show several configurations of reduced sets of gauges capable of optimally estimating the six components of the mechanical loads exerted on a circular cross-section shaft. The validation of the approach in a dedicated rig has shown the complexity of its experimental implementation.
  • PublicationOpen Access
    Optimal strain gauge configurations for the estimation of mechanical loads in the main shaft of HAWT
    (IOP Publishing, 2020) Iriarte Goñi, Xabier; Aginaga García, Jokin; Lerga Valencia, Francisco Javier; Gainza González, Gorka; Ros Ganuza, Javier; Bacaicoa Díaz, Julen; Ingeniaritza; Institute of Smart Cities - ISC; Ingeniería
    In Structural Health Monitoring of wind turbines, measuring the mechanical loads is a key issue. The customary techniques for this task use a full-bridge strain gauge configuration to measure each of the six load components exerted on the shaft. However, using only six strain gauges should be sufficient to estimate the six load components if a one-to-one correspondence was achieved. In this paper a different approach to mechanical loads estimation is presented where, measuring the strain of individual gauges in quarter-bridge configurations, it is possible to estimate all the load components from a single set of gauges. The configurations are optimally determined making use of the D-optimality criterion, which maximises the observability of the estimated components. The approach also provides configurations where the apparent strain related to temperature variations is automatically compensated. Results show several optimal configurations for different measuring conditions and shows that six strain gauges are enough to estimate all the load components. The new approach also opens the possibility to obtain configurations with more strain gauges as well as configurations that have to meet other requirements.
  • PublicationOpen Access
    Design, manufacturing, validation of a multi-orientation tilt test bench for testing vehicles rollover and tests of ATV-Quad for agricultural applications
    (MDPI, 2021) Bacaicoa Díaz, Julen; Ballesteros Egüés, Tomás; Arana Navarro, Ignacio; Aginaga García, Jokin; Latorre Biel, Juan Ignacio; Ingeniería; Ingeniaritza; Institute of Smart Cities - ISC
    A rollover test bench has been designed, manufactured, and validated for analyzing the all-terrain vehicle (ATV)-Quad overturn of diverse vehicles in different configurations, such as installing a rollover protection system (ROPS), considering drivers of different physical constitutions, the appropriate use of safety belts, or having a full or empty fuel tank. The main purpose of this research is to determine the tilt angle of the vehicle that triggers the ATV-Quad overturn. The scope of the design and development of the newly conceived bench include the mechanical structure, the electronics and the control. It can simulate static and dynamic rollover in different directions. As a main conclusion, it can be stated that the performance of the test bench was successful, since it allowed for the development of several ATV models, equipped with different dummies, in a variety of configurations. In particular, it was possible to assess the effectivity of the AD-ROPS system (automatically deployed ROPS), regarding the protection of the driver of the vehicle. Moreover, multiple tests, performed with diverse ATV-Quads in the developed bench and in different configurations, have been reported and their results discussed.
  • PublicationOpen Access
    Mechanical sensitivity analysis of strain gauge configurations in the main shaft of wind turbines
    (IOP Publishing, 2022) Bacaicoa Díaz, Julen; Iriarte Goñi, Xabier; Aginaga García, Jokin; Plaza Puértolas, Aitor; Ingeniaritza; Institute of Smart Cities - ISC; Ingeniería
    Wind turbines are reaching their remaining useful life, thus it is important to guarantee the well status of its components. A common way to check the status is to measure the loads on the Low Speed Shaft with strain gauges, but not always are bonded perfectly. In this work a sensitivity analysis of strain gauge con gurations is carried out, where the infuence of geometric and material parameters, and misplacement and misalignment parameters is analyzed. An analytical model for a single gauge was developed, obtaining a relation between the exerted loads and the strain measured by the strain gauge. By means of Taylor approximations the estimated loads were approached in order to have into account the in uence of the uncertainty of parameters. Results shown that the sensitivities with respect to the geometric and material parameters did not depend on the secondary loads while in the sensitivities with respect to the gauge bonding parameters the cross-talk e ect was present. In order to obtain realistic numerical results, a horizontal-axis NREL 5-MW wind turbine was simulated in OpenFAST with two wind-speed scenarios. The uncertainty of the estimated loads by the strain gauge con gurations was calculated.
  • PublicationOpen Access
    Kinematic design of a new four degree-of-freedom parallel robot for knee rehabilitation
    (ASME, 2018) Aginaga García, Jokin; Iriarte Goñi, Xabier; Plaza Puértolas, Aitor; Mata, Vicente; Ingeniería Mecánica, Energética y de Materiales; Mekanika, Energetika eta Materialen Ingeniaritza; Institute of Smart Cities - ISC
    Rehabilitation robots are increasingly being developed in order to be used by injured people to perform exercise and training. As these exercises do not need wide range movements, some parallel robots with lower mobility architecture can be an ideal solution for this purpose. This paper presents the design of a new four degree-of-freedom (DOF) parallel robot for knee rehabilitation. The required four DOFs are two translations in a vertical plane and two rotations, one of them around an axis perpendicular to the vertical plane and the other one with respect to a vector normal to the instantaneous orientation of the mobile platform. These four DOFs are reached by means of two RPRR limbs and two UPS limbs linked to an articulated mobile platform with an internal DOF. Kinematics of the new mechanism are solved and the direct Jacobian is calculated. A singularity analysis is carried out and the gained DOFs of the direct singularities are calculated. Some of the singularities can be avoided by selecting suitable values of the geometric parameters of the robot. Moreover, among the found singularities, one of them can be used in order to fold up the mechanism for its transportation. It is concluded that the proposed mechanism reaches the desired output movements in order to carry out rehabilitation maneuvers in a singularity-free portion of its workspace.