Luquin Oroz, Eduardo Adrián
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Luquin Oroz
First Name
Eduardo Adrián
person.page.departamento
Proyectos e Ingeniería Rural
person.page.instituteName
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
5 results
Search Results
Now showing 1 - 5 of 5
Publication Open Access Evaluation of R tools for downloading MODIS images and their use in urban growth analysis of the city of Tarija (Bolivia)(MDPI, 2022) Campero Taboada, Milton J.; Luquin Oroz, Eduardo Adrián; Montesino San Martín, Manuel; González de Audícana Amenábar, María; Campo-Bescós, Miguel; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Ingeniería; Ingeniaritza; Institute on Innovation and Sustainable Development in Food Chain - ISFOOD; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaThe aim of this study was to compare the available tools in R for downloading and processing Moderate Resolution Imaging Spectroradiometer (MODIS) data, specifically the Enhanced Vegetation Index (EVI) product. The R tools evaluated were the MODIS package, RGISTools, MODISTools, R Google Earth Engine (RGEE) package, MODIStsp, and the Application for Extracting and Exploring Analysis Ready Samples (AppEEARS) application. Each tool was used to download the same product (EVI) corresponding to the same day (3 December 2015), and downloaded data were used to analyze the urban growth of Tarija (Bolivia) as an interesting application. The following features were analyzed: download time and memory used during the download, additional postprocessing time, local memory occupied on the computer, and downloaded file formats. Results showed that the most efficient R tools were those that work directly in the “cloud” or use text queries (RGEE and AppEEARS, respectively) and provide, as a final product, a cropped.tif image according to the area of interest.Publication Open Access Dissolved solids and suspended sediment dynamics from five small agricultural watersheds in Navarre, Spain: a 10-year study(Elsevier, 2019) Merchán Elena, Daniel; Luquin Oroz, Eduardo Adrián; Hernández García, Iker; Campo-Bescós, Miguel; Giménez Díaz, Rafael; Casalí Sarasíbar, Javier; Valle de Lersundi, Jokin del; Ingeniaritza; Institute on Innovation and Sustainable Development in Food Chain - ISFOOD; Ingeniería; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaDissolved solids (DS) and suspended sediment (SS) loads are considered relevant environmental problems. They are related to a wide range of on-site and off-site impacts, such as soil erosion or salinization of water bodies. In this study, the dynamics of DS and SS concentrations and loads were assessed in five small watersheds covering representative agricultural land uses in Navarre (Spain). To this end, discharge, DS and SS concentration data were collected during ten hydrological years at each watershed outlet, and loads were computed from discharge and concentration values. DS concentration followed a seasonal pattern imposed by the availability of water, with higher concentrations recorded in low-flow periods and lower concentration in the high-flow period. SS concentration was extremely variable, with a range of 2–4 orders of magnitude in concentration for any specific discharge. Temporal variations (both intra- and inter-annual) in DS loads were explained by differences in runoff, whereas those of SS were not, being the SS loads associated mainly with specific high flow events. These temporal patterns were observed for both agricultural (this study) and non-agricultural (literature) watersheds. From the data in the Navarrese watersheds and those available in the literature, we inferred that agricultural land use, in general, tends to increase the concentration of both DS and SS. Regarding DS and SS yields, the effects of agricultural land use on DS yields are controlled by the changes in runoff rather than the (small) changes in DS concentration. In this sense, land uses changes expected to increase runoff (i.e., a shift from forested to arable or from rainfed to irrigated agriculture) would increase DS yields. On the other hand, agricultural land use tends to increase SS yields, although the effect is highly variable depending on site-specific factors, both natural (e.g., watershed shape) and anthropogenic (e.g., degree of soil conservation practices). In the Navarrese watersheds, DS yields ranged from 1.1 to 2.2 Mg ha−1 year−1 whereas SS yields ranged from 0.3 to 4.3 Mg ha−1 year−1. DS yields seem to dominate under non-agricultural conditions and in most agricultural land uses at the small watershed scale. On the other hand, SS yields dominate in watersheds with increased soil erosion as a consequence of arable land use over erosion-prone watersheds.Publication Open Access Hydrological records can be used to reconstruct the resilience of watersheds to climatic extremes(Nature Research, 2024) Huffaker, Ray; Campo-Bescós, Miguel; Luquin Oroz, Eduardo Adrián; Casalí Sarasíbar, Javier; Muñoz Carpena, Rafael; Institute on Innovation and Sustainable Development in Food Chain - ISFOODHydrologic resilience modeling is used in public watershed management to assess watershed ability to supply life-supporting ecoservices under extreme climatic and environmental conditions. Literature surveys criticize resilience models for failing to capture watershed dynamics and undergo adequate testing. Both shortcomings compromise their ability to provide management options reliably protecting water security under real-world conditions. We formulate an empirical protocol to establish real-world correspondence. The protocol applies empirical nonlinear dynamics to reconstruct hydrologic dynamics from watershed records, and analyze the response of reconstructed dynamics to extreme regional climatic conditions. We devise an AI-based early-warning system to forecast (out-of-sample) reconstructed hydrologic resilience dynamics. Application to the La Tejería (Spain) experimental watershed finds it to be a low dimensional nonlinear deterministic dynamic system responding to internal stressors by irregularly oscillating along a watershed attractor. Reconstructed and forecasted hydrologic resilience behavior faithfully captures monthly wet-cold/dry-warm weather patterns characterizing the Mediterranean region.Publication Open Access Challenges and progresses in the detailed estimation of sediment export in agricultural watersheds in Navarra (Spain) after two decades of experience(Elsevier, 2023) Barberena Ruiz, Íñigo; Luquin Oroz, Eduardo Adrián; Campo-Bescós, Miguel; Eslava, Javier; Giménez Díaz, Rafael; Casalí Sarasíbar, Javier; Ingeniería; Ingeniaritza; Institute on Innovation and Sustainable Development in Food Chain - ISFOODSoil erosion is a very serious environmental problem worldwide, with agriculture considered the main source of sediment in inland waters. In order to determine the extent and importance of soil erosion in the Spanish region of Navarra, in 1995 the Government of Navarra established the Network of Experimental Agricultural Watersheds (NEAWGN), which consists of five small watersheds representative of local conditions. In each watershed, key hydrometeorological variables, including turbidity, were recorded every 10 min, and daily samples were taken to determine suspended sediment concentration. In 2006, the frequency of suspended sediment sampling was increased during hydrologically relevant events. The main objective of this study is to explore the possibility of obtaining long and accurate time series of suspended sediment concentration in the NEAWGN. To this end, simple linear regressions between sediment concentration and turbidity are proposed. In addition, supervised learning models incorporating a larger number of predictive variables are used for the same purpose. A series of indicators are proposed to objectively characterize the intensity and timing of sampling. It was not possible to obtain a satisfactory model for estimating the concentration of suspended sediment. This would be mainly due to the large temporal variability found of the physical and mineralogical characteristics of the sediment, which would be affecting the turbidity value, independently of the sediment concentration, per se. This fact would be particularly important in small river watersheds such as those of this study, and especially if their physical conditions are spatially and temporally radically disturbed by agricultural tillage and by a constant modification of the vegetation cover, as is the case in cereal basins. Our findings suggest that better results could be obtained by including in the analysis variables such as soil texture and exported sediment texture, rainfall erosivity, and the state of vegetation cover and riparian vegetation.Publication Open Access Model prediction capacity of ephemeral gully evolution in conservation tillage systems(Wiley, 2021) Luquin Oroz, Eduardo Adrián; Campo-Bescós, Miguel; Muñoz Carpena, Rafael; Bingner, R.L.; Cruse, Richard M.; Momm, Henrique G.; Wells, R.; Casalí Sarasíbar, Javier; Ingeniaritza; Institute on Innovation and Sustainable Development in Food Chain - ISFOOD; Ingeniería; Gobierno de Navarra / Nafarroako Gobernua; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaEphemeral gully (EG) erosion has an important impact on agricultural soil losses and increases field surface hydrology connectivity and transport of pollutants to nearby water bodies. Watershed models including an EG component are scarce and not yet properly evaluated. The objective of this study is to evaluate the capacity of one such tool, AnnAGNPS, to simulate the evolution of two EG formed in a conservation tillage system. The dataset for model testing included runoff measurements and EG morphological characteristics during 3 years. Model evaluation focused on EG evolution of volume, width, and length model outputs, and included calibration and testing phases and a global sensitivity analysis (GSA). While the model did not fully reproduce width and length, the model efficiency to simulate EG volume was satisfactory for both calibration and testing phases, supporting the watershed management objectives of the model. GSA revealed that the most sensitive factors were EG depth, critical shear stress, headcut detachment exponent coefficient b, and headcut detachment leading coefficient a. For EG outputs the model was additive, showing low sensitivity to interactions between the inputs. Prediction of EG spatial evolution on conservation tillage systems requires improved development of gullyerosion components, since many of the processes were developed originally for traditional tillage practices or larger channel systems. Our results identify the need for future research when EG form within conservation tillage systems, in particular to study gully headcut, soil erodibility, and width functions specific to these practices.